CCIS meeting 8 May 2017, appendix 3b/3
Curriculum for the academic year 2017-2018: CS-Department MSc Courses and course descriptions SCI

CS-E3190 Principles of Algorithmic Techniques (5 cr)
Responsible teacher: Pekka Orponen
Status of the Course: Major core course in the CCIS Computer Science major, compulsory in the tracks Algorithms, Logic & Computation and Big Data & Large-Scale Computing.
Level of the Course: First-year M.Sc. level, can also be taken by advanced B.Sc. students.
Teaching Period: I - II (Autumn 2017)
Workload: Lectures: 36h (2x2h/week) Tutorial sessions: 18h (2h/week) Exam: 3h
Independent work: 78h (lecture review 24h, tutorial problems 45h, exam priming 9h)
Learning Outcomes: At this course you will become familiar with a number of fundamental structures and principles underlying the design of efficient algorithms, and will learn to approach new algorithmic problems using these generic paradigms. You will also come to appreciate the possibilities and limitations of theoretical a priori analysis of algorithm efficiency, and learn to perform such analyses in simple cases.
Assessment Methods and Criteria: Tutorial problems/assignments (15%) and an exam (85%).
Prerequisites: First year engineering mathematics, together with an introduction to probability theory (e.g. MS-A05XX), and programming skills (e.g. CS-A111X). Familiarity with basic data structures (e.g. CS-A114X) an asset.
Grading Scale: 0-5
Language of Instruction: English.

CS-E3210 Machine Learning: Basic Principles (5 cr)
Responsible teacher: Alex Jung
Teaching Period: I-II (Autumn 2017)
Workload: 24 + 24 (2 + 2)
Learning Outcomes: After the course, the student is able to apply the basic machine learning methods to data and to understand new models based on these principles.
Content: The course deals with basic principles needed to understand and apply machine learning models and methods. The topics include supervised and unsupervised learning, Bayesian decision theory, parametric methods, tuning model complexity, dimensionality reduction, clustering, nonparametric methods, decision trees, comparing and combining algorithms, as well as a few applications of these methods.
Assessment Methods and Criteria: Examination and exercise work.
Study Material: To be specified in MyCourses at the start of the course.
Prerequisites: CS-C3160 Data Science, CS-C3110 Datasta tietoon or equivalent skills.
Grading Scale: 0-5
Language of Instruction: English.
CS-E3220 Declarative Programming (5 cr)

Responsible teacher: Tomi Janhunen; Tommi Junttila
Level of the Course: Master’s level
Teaching Period: V (Spring 2018)
Workload: Lectures 20h, exercise sessions 20h, independent work 90h, examination 3h.
Learning Outcomes: Once you have completed the course you have familiarized yourself with the art of declarative programming where the goal is to specify what is to be computed rather than how the actual computation is to take place. You will have an in-depth understanding of central logical representations deployed in the declarative programming paradigm. Moreover, you are aware of the fundamental algorithmic ideas needed to implement declarative programming in practice. The hands-on exercises ensure that you will gain practical modeling skills and substantial familiarity with application problems and their main characteristics. Whilst you have acquainted yourself with contemporary solver technology and know how such tools are used to solve problems of interest.

Content: The course covers three mainstream approaches to declarative programming: Boolean satisfiability (SAT), answer set programming (ASP), and satisfiability modulo theories (SMT). Selected topics depending on the paradigm of interest such as efficient logical representations in terms of formulas and rules, normal forms, contemporary (conflict-driven, learning) algorithms for the search of satisfying assignments that correspond to solutions of problems. Translation of logical knowledge into normal forms and other logical representations. The realization of various reasoning tasks through satisfiability and/or by exploiting normal forms, e.g., query answering, equivalence checking, counting solutions, and finding optimal solutions. Identifying essential properties when modeling various kinds of problems and systems with logic.

Assessment Methods and Criteria: Compulsory programming assignments, tutorial exercises, and exam. The overall course grade depends on the points earned from these sources.

Study Material: Made available at MyCourses.
Substitutes for Courses: Replaces courses CS-E3200 Discrete Models and Search, CS-E4540 Answer Set Programming, and CS-E4570 Advanced Course in Boolean Satisfiability.
Prerequisites: Basics of propositional logic covered, e.g., by the course CS-E4800 Artificial Intelligence.
Grading Scale: 0-5
Language of Instruction: English

CS-E3900 USchool Intro (2 cr)

Responsible teacher: Marko Nieminen
Level of the Course: Master’s level
Teaching Period: I (Autumn 2017)
Workload: 54 h
Learning Outcomes: After this course, the students understand a) the foundations and scope of human-centred design, and b) the need for and practices in multidisciplinary design.

Content: Lectures and group exercises.

Assessment Methods and Criteria: Participation in lectures and group exercises.

Study Material: Lecture materials and readings as announced on the web pages.
Prerequisites: The course is meant for students accepted to USchool.
Grading Scale: pass/fail.
Language of Instruction: English.

CS-E4000 Seminar in Computer Science (5 cr)
Responsible teacher: Antti Ylä-Jääski; Mario Di Francesco
Level of the Course: Master’s level
Teaching Period: I-II, III-V (Fall and Spring)
Learning Outcomes: After successful completion of the course, you will be able to: find research papers and technical documentation; describe the elements and the structure of a technical document; evaluate the significance of a scientific work; summarize existing literature on a specific topic in computer science; write a technical report with some original contribution; present and defend technical content.
Content: The course addresses a broad range of topics in computer science including (but not limited to) networking, mobile computing, security, as well as software systems and technologies. These topics are offered by tutors from both academia and industry who individually guide students through the process of writing a technical report in the form of a scientific article.
Assessment Methods and Criteria: Technical report, opponent feedback and final course presentation.
Substitutes for Courses: CSE-E5000 Seminar on Software Systems, Technologies and Security
Prerequisites: Basic LaTeX skills. A bachelor degree and at least one semester of studies at master level are highly recommended.
Grading Scale: 0-5
Language of Instruction: English
Further Information: The content of the course varies. The number of participants is limited: students are selected based on their study plan and prior knowledge. Students of CS-E4000 can simultaneously participate in an integrated English course worth 3 ECTS credits and organized by the language center (LC-1310 Academic Communication for MSc Students). The English course has its own content, evaluation and requirements; however, it has the same timeline and deadlines as those in CS-E4000. The goal of the English course is to provide support for academic writing and presentation skills. The English course also fulfills the university regulation on foreign language studies for oral and written skills.

CS-E4001 Research Seminar in Computer Science(V) (1-10 cr)
Responsible teacher: Keijo Heljanko
Level of the Course: Master’s level
Teaching Period: I-II, III-V (Autumn and Spring)
Learning Outcomes: Students gain a deep understanding of an advanced topic in the computer, communication or information sciences. They learn to survey up-to-date research literature and technical documentation on a new topic, to analyze the information critically and to summarize it, to write a technical article or to discuss it with an engineering audience. The best students are also able to perform experiments to deepen their knowledge of the given topic, to solve a technical or scientific problem, and to present their own results.
Content: The course addresses a broad range of current topics in the computer, communication and information science areas.
Assessment Methods and Criteria: Active participation, defined in more details in the beginning of the course.
Grading Scale: 0-5, may also be graded with pass/fail.
Language of Instruction: English
Further Information: The content of the course varies.

CS-E4002 Special Course in Computer Science(V) (1-10 cr)
Level of the Course: Master’s level
Teaching Period: Announced later.
Learning Outcomes: You are familiar with some scientifically or technically demanding topic.
Content: This course has a varying topic. The content of the course is a selected current topic areas in communication, computer and information sciences. When arranged, the course may be given in English. Information about the arrangement and the beginning of the course will be published in the web pages.
Assessment Methods and Criteria: Announced later.
Grading Scale: 0-5, may also be graded with pass/fail.
Further Information: The content of the course varies.

CS-E4003 Special Assignment in Computer Science(V) (1-10 cr)
Responsible teacher: Petri Vuorimaa
Level of the Course: Master’s level
Teaching Period: Agreed with the teacher.
Learning Outcomes: You have experience in defining, analyzing and solving a demanding technical question. You know how to find and use relevant documentation, standards and scientific literature. You are able to document your work clearly.
Content: Independent technical or scientific research or software project in the field of computer, communication or information sciences. With a prior agreement, the work can be carried out in groups.
Assessment Methods and Criteria: Preparation, reporting and presentation of a research or software project.
Grading Scale: 0-5, may also be graded with pass/fail.
Further Information: The content of the course varies. Any professor of CS department can act as a teacher of this course. More information in MyCourses.

CS-E4004 Individual Studies in Computer Science(V) (1-10 cr)
Responsible teacher: Petri Vuorimaa
Level of the Course: Master’s level
Teaching Period: Agreed with the teacher.
Learning Outcomes: You have experience in defining, analyzing and solving a demanding technical question. You know how to find and use relevant documentation, standards and scientific literature. You are able to document your work clearly.
Content: Independent technical or scientific research or software project in the field of computer, communication or information sciences. Can also be a literature survey on an advanced topic. With a prior agreement, the work can be carried out in groups.
Assessment Methods and Criteria: Preparation, reporting and presentation of a research or software project.
Grading Scale: 0-5, may also be graded with pass/fail.
Further Information: The content of the course varies. Any professor of CS department can act as a teacher of this course. More information in MyCourses.

CS-E4005 Methods and Tools for Network Systems (5 cr)
Responsible teacher: Mario Di Francesco
Level of the Course: Master’s level
Teaching Period: I (Fall 2017)
Learning Outcomes: After successful completion of the course, you will be able to: describe the most important methodologies for network systems; use software tools to address concrete problems in computing and networking; find research papers and technical documentation; identify the methodologies employed by existing solutions; analyze the strengths and weaknesses of different methods in specific scenarios.
Content: Methodologies and technical approaches for network systems: computer
simulation, mathematical modeling, data analysis, experimental evaluation. Examples of software tools for the different methodologies. Accessing and evaluating research literature and technical documentation from different sources.

Assessment Methods and Criteria: Weekly exercises.

Substitutes for Courses: CSE-E4430 Methods and Tools for Network Systems and T-110.6130 Systems Engineering in Data Communications Software L.

Prerequisites: Basic computer programming skills, basic knowledge of network technologies and mathematics for computer science.

Grading Scale: 0-5

Language of Instruction: English

CS-E4070 Special Course in Machine Learning and Data Science(V) (3-10 cr)

Responsible teacher: Juha Karhunen; Harri Lähdesmäki; Aki Vehtari; Jouko Lampinen; Samuel Kaski; Aristides Gionis; Heikki Mannila; Juho Rousu; Alex Jung

Teaching Period: Varies.

Content: Postgraduate level knowledge from one of the fields of computer and information science. The actual contents of the course vary from year to year. The course can be lectured, or arranged in seminar form.

Assessment Methods and Criteria: To be specified at the start of the course.

Study Material: Usually some new study book or collection of articles.

Substitutes for Courses: T-61.6010 Special Course in Computer and Information Science I, T-61.6020 Special Course in Computer and Information Science II, T-61.6030 Special Course in Computer and Information Science III, T-61.6040 Special Course in Computer and Information Science IV, T-61.6050 Special Course in Computer and Information Science V, T-61.6060 Special Course in Computer and Information Science IV, CS-E4010 Special Course in Machine Learning and Data Science I, CS-E4020 Special Course in Machine Learning and Data Science II, CS-E4030 Special Course in Machine Learning and Data Science III, CS-E4040 Special Course in Machine Learning and Data Science IV, CS-E4050 Special Course in Machine Learning and Data Science V, CS-E4060 Special Course in Machine Learning and Data Science VI.

Grading Scale: 0-5, may be graded with pass/fail

Language of Instruction: English

Further Information: The contents of the course vary.

CS-E4100 Mobile Cloud Computing (5 cr)

Responsible teacher: Mario Di Francesco

Level of the Course: Master’s level

Teaching Period: I - II (Fall 2017)

Learning Outcomes: After successful completion of the course, you will be able to: describe the distinctive features of mobile applications; explain how mobile applications can be supported by a cloud computing infrastructure; distinguish between different forms of virtualization; manage the resources offered by cloud computing platforms; write a mobile application that leverages cloud computing; evaluate the suitability of different cloud delivery models for specific application scenarios involving mobile computing.

Content: Principles of mobile computing. Distributed applications and services. Cloud computing and virtualization. Managing and using resources offered by cloud service providers. Computation offloading and thin-client computing. Application scenarios and selected use cases.

Assessment Methods and Criteria: Project work and assignments.

Substitutes for Courses: T-110.5121 Mobile Cloud Computing

Prerequisites: CSE-C2400 Computer Networks or equivalent skills. Basic mobile or web application programming skills.

Grading Scale: 0-5

Language of Instruction: English
CS-E4110 Concurrent Programming (5 cr)

Responsible teacher: Keijo Heljanko
Level of the Course: Master’s level
Teaching Period: I - II (Autumn 2017)
Workload: Lectures: 24 (2), Teaching in small groups: 12 (1), Independent work: 96
Learning Outcomes: You are aware of how easily fatal, hard to identify and innocent looking bugs creep in to the code of concurrently running programs. You can apply general design principles, models and methods to construct concurrent systems that, in addition to all other requirements, behave correctly with the respect to their functional specifications. You have got an experience of applying the theories using the concurrency features of Java and Scala in programming exercises. You know weak memory models, tools for finding concurrency bugs, and modern concurrent programming frameworks such as Akka Actors and Apache Spark.
Content: Principles of concurrent programming, synchronization and communication mechanism. Concurrent and distributed algorithms. Concurrent and distributed systems.
Assessment Methods and Criteria: Lectures, examination and programming exercises.
Course feedback.
Study Material: Lecture slides and handouts
Substitutes for Courses: T-106.5600 Concurrent Programming
Prerequisites: Principles of computer architecture, operating system and run-time system from software perspective. Eg. CS-A1120 / ICS-A1120 Programming 2. Java and Scala programming experience.
Grading Scale: 0-5
Language of Instruction: English

CS-E4120 Scalable Cloud Computing (5 cr)

Responsible teacher: Keijo Heljanko
Status of the Course: Compulsory course of the Big Data and Large-Scale Computing track in the Computer Science and Engineering major.
Level of the Course: Master’s level
Teaching Period: I-II (Autumn 2017)
Workload: Lectures: 24 (2), Teaching in small groups: 12 (1), Independent work: 96
Learning Outcomes: This course focuses on advanced scalable cloud computing technologies and on key algorithmic ideas and methods used to implement them. After completing this course you are able to list many of the key technologies used in big data processing and to select suitable methods for solving challenging big data processing tasks using cloud computing technologies. You will also be able to compare the scalability and fault tolerance implications of using the selected methodologies.
Content: Advanced topics in cloud computing with emphasis on scalable distributed computing technologies employed in cloud computing. Key cloud technologies and their algorithmic background. Main topics are distributed file systems, distributed batch processing with the MapReduce and the Apache Spark computing frameworks, and distributed cloud based databases.
Assessment Methods and Criteria: Exam and home assignments. Course feedback.
Study Material: Lecture slides, tutorial assignments and their answers.
Substitutes for Courses: Replaces former courses CSE-E5430 / T-79.5308 Scalable Cloud Computing and T-79.5307 Distributed Computing.
Prerequisites: Basic programming skills (CS(E)-A1110 Programming 1). Familiarity with basic data structures (CS(E)-A1140 Data Structures and Algorithms or CS-E3190 / T-79.4202 Principles of Algorithmic Techniques) an asset.
Grading Scale: 0-5
Language of Instruction: English

CS-E4140 Applications and Services in Internet(V) (5 cr)
Responsible teacher: Antti Ylä-Jääski
Level of the Course: Master's level
Teaching Period: I-II (Autumn 2017)
Workload: 24+0 (2+0); Lectures 24 h, Preparation for lectures 24 h, Exercises 50 h (20 hours for the first exercise, 30 hours for the second exercise), Preparing for final exam 30 h, Final open exam 7 h
Learning Outcomes: You are familiar with common Internet application and service architectures, and are able to evaluate the extent of their applicability. You know how to study research literature, can summarize its results, and are capable of contributing your own analysis of a research topic.
Content: The course focuses on current issues concerning the design, development, deployment and management of applications and services in Internet. The topical areas vary yearly covering system architectures, service architectures, service management and related technical development issues. Some of the focal areas are peer-to-peer technologies, systems and services in comparison to more traditional client-server systems.
Assessment Methods and Criteria: Exam and exercises and course feedback.
Substitutes for Courses: Replaces former courses T-110.5150 / T-110.7100 Applications and Services in Internet.
Prerequisites: CSE-C2400 Computer Networks or equivalent skills.
Grading Scale: 0-5
Language of Instruction: English
Further Information: The contents of the course vary.

CS-E4160 Laboratory Works in Networking and Security(V) (5-10 cr)
Responsible teacher: Antti Ylä-Jääski; Tuomas Aura
Level of the Course: Master's level
Teaching Period: III-IV (Spring 2018)
Workload: Lectures 2 h, assignments 131 h (for 5 cr)
Learning Outcomes: You have practical understanding and hands-on experience of networking and network-security technologies. You can build a computer network in practice and know the basic settings for an IP-based network. You are able to install and configure network services. You can test and analyze network protocols and applications and interpret their workings based on the specifications. You know how to monitor and analyze network traffic and how to specify and install protection mechanisms including security protocols and traffic filters. The learning outcome may vary depending on the choice of assignments.
Content: The course consists of laboratory assignments related to designing and operating computer networks, telecommunications software and network services. Students will become familiar with common networking and security solutions and analysis tools. In this course, students apply principles learned in other courses.
Assessment Methods and Criteria: Participation in the first lecture, assignments and course feedback.
Study Material: Protocol specifications and software documentation.
Prerequisites: CSE-C2400 Computer Networks and CS-C3130 / CSE-C3400 Information Security or equivalent skills; basic Unix skills.
Grading Scale: 0-5
Language of Instruction: English
Further Information: The contents of the course vary.

CS-E4170 Mobile Systems Programming (5 cr)
Responsible teacher: Antti Ylä-Jääski
Level of the Course: Master's level
Teaching Period: III - IV (Spring 2018)
Workload: 16+0 (2+0), Lectures 16 h, Lecture preparation 16 h, Programming assignment 98 h
Learning Outcomes: You can write software for mobile devices. You know the central paradigms, practical solutions, and limitations for common mobile platforms.
Content: The course covers the general properties of mobile systems. In addition, you will familiarize yourself with the special features and most useful design patterns of mobile system programming. Special attention will be given to current environments.
Assessment Methods and Criteria: Project Assignments and course feedback.
Prerequisites: CSE-C2400 Computer Networks and CS-A1120 / ICS-A1120 Programming 2 or equivalent skills.
Grading Scale: 0-5
Language of Instruction: English

CS-E4200 Emergent User interfaces (5 cr)
Responsible teacher: David McGookin
Level of the Course: Master's level
Teaching Period: III-IV (Spring 2018)
Learning Outcomes: After taking the course the student understands interaction techniques that deviate from the usual interfaces between human and computer, and has practical experience of building such an interaction.
Content: The course gives an overview of new and emerging UI paradigms that go beyond traditional WIMP interfaces. These include tangible interaction, multimodal interaction (audio, haptic, smell and taste) and the various sensors and sensing techniques and technologies used to implement them. A significant proportion of the course is spent on hands-on project work, where students will collaborate to implement a novel user interface (most likely tangible) using electronic prototyping tools and software (most likely Arduino).
Assessment Methods and Criteria: Assessment is made on the report and demonstration of the group implementation project.
Study Material: To be announced later in course web page.
Prerequisites: CS-E5220 / CSE-E5820 User Interface Construction
Grading Scale: 0-5
Language of Instruction: English

CS-E4210 Learning Technologies(V) (5 cr)
Responsible teacher: Lauri Malmi
Level of the Course: Master's level
Teaching Period: I - II (Autumn 2017)
Content: The course will discuss varying themes related to modern learning technologies, for example, functionalities and architectures of learning environments, automatic assessment techniques, social navigation in learning environments, intelligent tutoring systems, gamification, learning analytics, visualization techniques, and the role of modern learning theories in learning technology research. The theme and course requirements vary yearly.
Substitutes for Courses: CSE-E5280
Prerequisites: Bachelor's degree in computer science and engineering.
Grading Scale: 0-5
Language of Instruction: English

CS-E4220 Research methods(V) (5-8 cr)
Responsible teacher: Lauri Malmi
Level of the Course: Master's level
Teaching Period: III - V (Spring), not lectured in the academic year 2017-2018.
Learning Outcomes: After you have taken this course you have the basic knowledge concerning the research process and different kinds of research methods, especially research methods that are used in educational research. You are able to evaluate the appropriateness of different research methods in relation to your own research question and to perform the study.
Content: Various research processes and methods that can be applied to study human actions, perceptions, and motivations in some form. Research methods that can be applied to study learning in the area of information technology are one central area of the course. Course content varies yearly.
Assessment Methods and Criteria: To be announced separately.
Substitutes for Courses: T-106.5550
Grading Scale: 0-5, may be graded with pass/fail
Language of Instruction: English
Further Information: Course is intended mainly for PhD students who are planning or just starting their research. Graduate students who are planning their masters thesis may also benefit from this course.

CS-E4300 Network Security (5 cr)
Responsible teacher: Tuomas Aura
Level of the Course: Master's level
Teaching Period: II (Autumn 2017)
Workload: Lectures 12 h, Exercises 121 h
Learning Outcomes: You will understand common security technologies for computer networking and communication. You will be able to read protocol specifications and apply and critically evaluate them in the development of secure systems, and develop basic communication-security solutions for new applications and services.
Content: Common security protocols and architectures for Internet, wireless networks and mobile devices. Securing the communication in new network-based services and applications. Connecting ubiquitous computing devices to the cloud. The learning takes place through small design and implementation exercises.
Assessment Methods and Criteria: Exercises, active participation, and course feedback.
Study Material: See course web page.
Substitutes for Courses: Replaces former course T-110.5241/T-110.5240 Network Security
Prerequisites: Broad knowledge of computer security, networking and cryptography.
Grading Scale: 0-5
Language of Instruction: English

CS-E4310 Mobile Systems Security (5 cr)
Responsible teacher: N Asokan
Status of the Course: Compulsory course of the Secure Systems track in the Computer Science and Engineering major.
Level of the Course: Master's level
Teaching Period: III-IV (Autumn 2017 and Spring 2018)
Workload: 32 h (16 2h-contact sessions) Weekly written exercises: 63 h; Independent study: 20 h
Learning Outcomes: You will learn the principles behind software and hardware system security architectures, with a particular focus on mobile devices. You will learn selected example platform security architectures in detail and be able to identify similarities and differences between different architectures. You will be able to recognize usability challenges in designing security mechanisms for mobile devices. You will learn about
advanced topics like Internet-of-Things (IoT) security and use of machine learning in security. You will gain an overview of current research issues in the area.

Content: Basics of access control, Android platform security architecture, General model of platform security and design space for different instantiations, Trusted execution environments, Case studies of usable security challenges, IoT security, Machine learning & security, Current research issues in system security. Students interested in doing practical system security will be offered implementation project topics that they can work on for additional credit as part of a special course in information security (CS-E4330). More information on course wiki at https://wiki.aalto.fi/display/mss

Assessment Methods and Criteria: Weekly written exercises, course feedback. (No exam)

Study Material: Supplementary reading - “Mobile Platform Security” by N.Asokan et al, Morgan & Claypool, December 2013

Prerequisites: CS-C3130 / CSE-C3400 Information Security or equivalent skills.

Grading Scale: 0-5

Language of Instruction: English

CS-E4320 Cryptography and Data Security (5 cr)

Responsible teacher: Tuomas Aura

Level of the Course: The course is only for students who have completed their general studies.

Teaching Period: I - II (Autumn 2017)

Workload:
- Lectures: 24 (4)
- Teaching in small groups: 16
- Programming assignments: 32
- Other independent work: 58
- Exam: 3

Learning Outcomes: Having completed the course, you are able to recognise commonly used mathematical building blocks in cryptographic primitives and understand how they work. You are also familiar with the basic principles of cryptographic security which are authentication, confidentiality, and integrity of data. You can describe common attacks such as meet-in-the-middle, man-in-the-middle, and collision attacks, and understand basic limits of cryptographic security defined in terms of parameter lengths. Given a cryptographic primitive in a data security system, you can explain why such a primitive is used and what kind of security task it performs, as well as how it relates to other primitives in the system.

Assessment Methods and Criteria: Exam and programming tasks.

Substitutes for Courses: Replaces former course T-79.4502 / T-79.4501 Cryptography and Data Security.

Prerequisites: No formal prerequisites. Recommended: Basics of discrete mathematics, elementary programming skills, algorithm complexity.

Grading Scale: 0-5

Language of Instruction: English.

CS-E4330 Special Course in Information Security(V) (2-10 cr)

Responsible teacher: N Asokan; Tuomas Aura

Level of the Course: Master’s level
Teaching Period: I-II, III-IV, V
Learning Outcomes: In this course, you will become familiar with some timely, scientifically or technically demanding topic in the area of information security.
Content: The topics, teachers and timing may change from year to year. Information about the arrangements will be published on the web pages before the beginning of the course.
Assessment Methods and Criteria: Announced later.
Substitutes for Courses: Replaces the former course T-110.6220 Special Course in Information Security P.
Prerequisites: Announced later.
Grading Scale: 0-5, may be graded with pass/fail.
Language of Instruction: English
Further Information: Visiting researchers and professionals from the university and IT industry. The contents of this course vary.

CS-E4400 Design of WWW Services (5 cr)
Responsible teacher: Petri Vuorimaa
Status of the Course: Compulsory course of the Web Technologies, Applications, and Science track in Computer Science major.
Level of the Course: Master's level
Teaching Period: I – II (Autumn 2017)
Workload: Lectures 24 h (2 x 2 h/week, 12 times), group work 84 h (= 108 h in total).
Learning Outcomes: During the course, you will go through the whole process of creating a finalized WWW service ready to be used by external users. You will gain an understanding of important aspects of WWW development, including service design (user categorization, functional design, information architecture, information security, graphic design, usability, etc.), service implementation (markup languages, Web programming languages and frameworks, databases, etc.), and content development (content production, copyrights, etc.). You will practice your skills while planning and implementing your service and documenting service development process in a sizable project work exercise. After the course, you will be able to develop a WWW service.
Content: The course deals with designing and implementing WWW sites and interactive services on the Web. Guest lecturers from academia and industry cover relevant aspects, such as various Web service implementation techniques, usability, web service life span, graphic design, usability, and information security. The project work done in groups consists of designing and implementing a WWW service and documenting the development process.
Assessment Methods and Criteria: The course teaching consists of lectures and project work done in groups. The grading is 100% based on the project work, which consists of three phases: design phase, demo phase, and final phase. Students receive points after each phase; final grade is given based on the total number of points.
Study Material: Lecture slides and assignment instructions as well as the material listed on the course web pages (see Additional reading).
Substitutes for Courses: Replaces courses ME-E4360 Design of WWW Services, T-111.361, T-111.362, T-111.4360.
Prerequisites: CS-C1180/ME-C2300 Basics of web publishing / T-75.1110 XML Based Description Languages / T-111.1100 Tools of Digital Media recommended.
Grading Scale: 0-5
Registration for Courses: Registration via WebOodi. Check the registration times on WebOodi.
Language of Instruction: English
Further Information: All lectures are held during period I.

CS-E4410 Semantic Web (5 cr)
Responsible teacher: Eero Hyvönen
Level of the Course: Master's level
Teaching Period: III – V (Spring 2018)
Workload: 16 + 16 (2 +2), lectures and literature 45%, exercises and programming 55%.
Learning Outcomes: The idea of the course is to get to know the idea of semantic web, the technologies and its possible applications and learn how to use the programming tools of the area in practice.
Content: The core content of the course consists of Semantic Web technologies and standards such as Resource Description Framework (RDF) and Web Ontology Language (OWL). Rule systems, ontology techniques and Semantic Web tools and applications will also be covered. The theoretical part of the course will be complemented by exercise work.
Assessment Methods and Criteria: Examination (100%) and exercises.
Substitutes for Courses: ME-E4300 / AS-75.2500, AS-75.105, T-75.4300.
Prerequisites: Data Structures and Algorithms (recommendation).
Grading Scale: 0-5
Language of Instruction: English

CS-E4420 Information Retrieval (5 cr)
Responsible teacher: Eero Hyvönen
Level of the Course: Master’s level
Teaching Period: III – IV (Spring 2018)
Workload: Lectures 24 h, exercises 42 h, self-study 36 h.
Learning Outcomes: Upon completion of the course the student knows the basic concepts and methods of information retrieval.
Content: Classic information retrieval (Boolean method, vector space model, probability models), content based retrieval (images, multimedia), web retrieval systems, evaluation of information retrieval systems.
Assessment Methods and Criteria: Exam and exercises.
Substitutes for Courses: Replaces course ME-E4400 / T-75.4400 Information Retrieval.
Grading Scale: 0-5
Language of Instruction: English

CS-E4430 Web Services (4 cr)
Responsible teacher: Eetu Mäkelä; Eero Hyvönen
Level of the Course: The course is only for students who have completed their Bachelor’s Degree.
Teaching Period: I - II (Autumn 2017)
Workload: Lectures 20 h, assignments 30h, study circles 20 h and home examination 30 h.
Learning Outcomes: Having completed the course the student will be able to analyse web-service techniques and their relations to service requirements. The student will be able to apply web-service techniques to service scenarios and analyse techniques required in distributed environments, such as transaction management and synchronisation of messaging.
Content: The course covers web-services standards, tools and models such as SOAP, WSDL, UDDI and REST, choreography languages, semantic markup languages such as WSMF and relevant tools and applications.
Assessment Methods and Criteria: Home examination (100%). Assignment and study circles on grading scale pass/fail.

Substitutes for Courses: T-75.5300 and AS-75.3601/AS-75.3600
Prerequisites: T-75.1110/AS-75.1110/AS-0.1110/AS-0.110, ME-E4300 / T-75.4300 Semantic Web (recommended).
Grading Scale: 0-5
Language of Instruction: English

CS-E4450 Explorative Information Visualization (5 cr)
Responsible teacher: Tomi Kauppinen; Tapio Takala
Level of the Course: Master’s level
Teaching Period: I – II (Autumn 2017)
Learning Outcomes:
Learning Outcomes in three categories (must know, should know, nice to know):
Must know: Basics about how to visualize information in interactive and explorative ways. For this the students will learn how to support information usability for creating visualizations with web technologies. Course is motivated by showing real examples of dealing with spatial, temporal and thematic information, and solutions to them. Those are required to be well understood as a result of the course.
Should Know: Handling spatial, temporal and thematic data in creative ways. Understanding how to query only the part of data that is useful in a given aggregation, visualization or browsing function is an example of this. Included are different explorative visualization strategies, and understanding of space and time as major integrators for data. As part of this, students should know the requirements for data, and data descriptions for various visualization and application scenarios.
Nice to know: The works of other students in more detail, i.e. topics, research problems, provided methods and solutions presented in them are material in the course, and belong to this category. Students are introduced to other topics via discussion sessions, presentations, and via the peer review process where students are required to give feedback to other works.
In summary students will learn theory, techniques, presentation and organizational skills for creating explorative information visualizations.

Content: In this course we study approaches for explorative information visualization. The idea is to support information usability by enabling to explore interesting patterns from datasets in visual ways. Explorative information visualization makes a joint use of efficient metaphors like hierarchies, graphs, charts, lists, maps, and timelines. The course supports students to understand the role of hybrid methods from spatial data mining to network analytics, and from linked data to time-series handling for supporting information visualization. Our focus is on the process-thinking, thus starting from sparse datasets and to understand the tasks for iteratively making sense of data. In the course we will have a special emphasis on visualizing spatial and temporal information jointly with thematic information. The seminar builds on the idea of flipped classroom and blended learning ideas, and thus combines online learning materials with intensive face to face sessions. Online materials consist of lectures for preparing, handling and analyzing data, integrating different datasets, and for approaches to create visual demonstrations of data with maps, timelines and thematic overviews. The course consists of sessions each having a brief lecture, discussions, group works and presentations. The theoretical part of the course is deepened via our joint sessions and by individual seminar reports on selected topics.
Assessment Methods and Criteria: Grading of the seminar is as follows: 1/3 for the seminar work, 1/3 for the opponent work, 1/3 for the active participation and presentation of the seminar work. As part of the active participation grade, students are required to prepare a one page abstract of the assigned readings / lectures in relation to her own
topic.

Study Material: Online videos, tutorials and exercises, face to face sessions, articles.

Grading Scale: 0-5

Registration for Courses: Registration via WebOodi. Check the registration times on WebOodi.

Language of Instruction: English (default) or Finnish depending on implementation.

CS-E4460 WWW Applications (5 cr)

Responsible teacher: Petri Vuorimaa

Level of the Course: Master or doctoral level.

Teaching Period: I - II (Autumn 2017)

Workload: Lectures and workshop 28 h, group work 80 h (= 108 h in total).

Learning Outcomes: Students will learn how to search scientific/technical information and effectively communicate their findings to the public in the form of a written report and a short presentation. In addition, they will learn how to work as part of a group that plans, schedules, executes, and documents a small web development project.

Content: The course deals with emerging/experimental web technologies. The actual topics addressed vary from year to year. In previous years, both the presentation and project work are combined together as a single project, which is done in groups of two students. The topics include most important HTML5 technologies, such as Canvas, WebGL, WebSockets, Web Workers, Geolocation, local storage, and CORS.

Assessment Methods and Criteria: The course grade is based on the final report and oral presentation of the project work.

Study Material: Lecture slides and assignment instructions as well as the material listed on the course web pages (see Additional reading).

Substitutes for Courses: Replaces course CS-E4440 WWW Applications.

Prerequisites: CS-C3170 / CSE-C3210 Web Software Development, CS-E4400 / ME-E4360 Design of WWW Services or equivalent knowledge of web application development.

Grading Scale: 0-5

Registration for Courses: Registration via WebOodi. Check the registration times on WebOodi.

Language of Instruction: English

Further Information: The number of participants is limited to 30. Students have to confirm their participation by attending the first lecture.

CS-E4500 Advanced Course in Algorithms (5 cr)

Responsible teacher: Petteri Kaski

Level of the Course: Master’s level.

Teaching Period: III - IV (Spring 2018)

Workload: Lectures: 18 (2)
Teaching in small groups: 36 (4)
Independent work: 81

Learning Outcomes: This course will deepen your knowledge and skills in algorithm design. You will become familiar with a number of advanced design principles and tradeoffs between quantities such as running time, space usage, parallel speedup, success probability, and quality of approximation.

Content: Advanced algorithm design techniques such as randomization, approximation, parameterisation, and algebraisation. Examples of contemporary advanced algorithms and supporting data structures. Tradeoffs between objectives and computational resources. The course consists of a fixed core part and a varying part covering topics of current interest.

Assessment Methods and Criteria: Points earned from weekly problem sets determine the course grade.

Study Material: Lecture notes and articles.

Course Homepage: https://mycourses.aalto.fi/course/view.php?id=8914

Prerequisites: Prerequisites: Fundamentals of algorithm design and analysis (e.g. CS-E3190 /T-79.4202 Principles of Algorithmic Techniques or T-106.4100), good programming skills. First year engineering mathematics, together with an introduction to probability theory (e.g. MS-A050X). Familiarity with discrete algebraic techniques (e.g. linear programming) an asset.

Grading Scale: 0-5

Language of Instruction: English.

CS-E4510 Distributed Algorithms (5 cr)

Responsible teacher: Jukka Suomela
Level of the Course: Master’s level
Teaching Period: I - II (Autumn 2017)
Workload: Lectures: 24 h (1 lecture per week). Exercise sessions: 24 h (1 meeting per week). Exercises and other independent work: 79 h. Exams: 6 h (2 exams).

Learning Outcomes: After this course, you will be able to design and analyse efficient distributed algorithms for many different kinds of problems that are related to computer networks and other distributed systems. You will also know how to prove that your algorithm is as fast as possible, i.e., the same problem cannot be solved faster with any distributed algorithm. You will be able to use reductions between computational problems in the context of distributed computing, construct covering relations between graphs in order to prove impossibility results, and apply Ramsey’s theorem to prove lower bounds on distributed time complexity.

Content: This course provides an introduction to the theory of distributed algorithms. The topics include algorithmic techniques that can be used to solve graph problems efficiently in extremely large networks, as well as fundamental impossibility results that set limits to distributed computing.

Assessment Methods and Criteria: Exams and exercises.

Study Material: Available online.

Substitutes for Courses: ICS-E5020 Distributed Algorithms

Prerequisites: Bachelor’s degree in computer science (or equivalent). No prior knowledge of distributed systems is needed, but students are expected to have an interest in algorithmic problems and a basic knowledge of discrete mathematics.

Grading Scale: 0-5

Language of Instruction: English

CS-E4520 Computer-Aided Verification and Synthesis (5 cr)

Responsible teacher: Stavros Tripakis
Level of the Course: Master’s level
Teaching Period: III - IV (Spring 2018)
Workload: There will be approximately 16 lectures of 2 hours each, biweekly homeworks, a final exam, and a project.

Learning Outcomes: The students will learn how to formally model and specify systems and their properties, and the fundamental techniques and algorithms for checking automatically that a system satisfies a property, as well as for synthesizing automatically systems that satisfy certain properties by construction. The students will be exposed to state-of-the-art verification tools such as the model-checkers NuSMV and Spin, the SAT and SMT solvers Minisat and Z3, the theorem provers PVS and Isabelle, and synthesis tools such as Acacia+.

Content: Designing large and complex systems (digital circuits, embedded control systems such as automated vehicles, computerized health-care devices such as pacemakers, cyber-physical systems such as automated intersections, etc.) cannot be
done “by hand”. Instead, designers use computer-aided techniques, that allow to build system models ("virtual systems") and verify correctness of the design before the real system is actually built. This course covers fundamental topics in computer-aided verification, including modeling and specification formalisms, transition systems and temporal logic, regular and omega-regular languages, safety and liveness properties, state-space exploration, model checking, SAT solving, bounded-model checking, binary-decision diagrams, compositionality and assume-guarantee reasoning, contracts and component-based design. The course also covers fundamental topics in computer-aided synthesis of correct-by-construction systems, starting from high-level formal specifications, or from example scenarios.

Assessment Methods and Criteria: The grade will be based on class participation (10%), homeworks (30%), final exam (40%), and the project (20%).

Study Material: Slides, lecture notes, and research papers provided during class

Substitutes for Courses: ICS-E5010 Computer-Aided Verification and Synthesis

Prerequisites: Bachelor degree in computer science (or equivalent) recommended. Undergraduates wishing to attend are asked to email Prof. Tripakis prior to registering.

Grading Scale: 0-5

Language of Instruction: English

Further Information: The course is primarily for masters, and phd-level students, but may also be appropriate for advanced undergraduates. In the latter case, please check with instructor beforehand.

CS-E4530 Computational Complexity Theory (5 cr)

Level of the Course: The course is only for students who have completed their Bachelor's degree.

Teaching Period: III - IV (Spring 2018)

Workload: Lectures: 36 Examinations: 3 Homework assignments: 56 Other independent work (including preparing for the examinations): 39

Learning Outcomes: Once you have taken the course, you master the key complexity classes, their underlying models of computation, and relationships. You are able to formalise and abstract from a given computational task relevant computational problems and argue that they belong to appropriate complexity classes. You understand the concept of reductions and how it can be used to order problems by their computational complexity. You are able to show using reductions that a problem is complete for a central complexity class (such as NP) and you understand the importance and implications of such a result. You are familiar with the concepts of randomised, approximation, and parallel algorithms and aware of related complexity classes and their relation to other complexity classes and their models of computation.

Assessment Methods and Criteria: Homework assignments and final exam. The grade of the course is determined by the respective grades of the homework assignments (50%) and the final exam (50%).

Substitutes for Courses: T-79.5103 Computational Complexity Theory

Prerequisites: Automata and formal languages. Deterministic and nondeterministic Turing machines. Decidable and undecidable problems (e.g. CS-C2150 / ICS-C2000 Theoretical Computer Science).

Grading Scale: 0-5

Language of Instruction: English.
CS-E4550 Advanced Combinatorics in Computer Science(V) (5 cr)

Responsible teacher: Parinya Chalermsook
Level of the Course: Master's level
Teaching Period: V (Spring 2018)
Workload: Lectures: 18 (2)
Teaching in small groups: 36 (4)
Independent work: 81 (solving problems and/or working on the course project)
Learning Outcomes: Once you have taken this course you have received an in-depth introduction to a topic in advanced combinatorics with its applications in computer science. The course has varying content and the precise learning outcomes vary by instance.
Content: Lectured with varying content each year on the general theme of combinatorics of various aspects of computation. The Autumn 2017 instance will cover “Algorithmic Lower Bound Techniques”, covering combinatorial techniques in proving conditional lower bounds (showing limits of efficient computation). The Autumn 2018 instance will study “Graphs, Algorithms, and Complexity”, with the goal of giving exposure to various aspects of graph theory and their role in efficient computation.
Assessment Methods and Criteria: Points earned from problem sets and/or the course project determine the course grade.
Study Material: Lecture notes and articles.
Substitutes for Courses: ICS-E5030 Advanced Combinatorics in Computer Science, T-79.5205 Combinatorics L
Course Homepage: To be announced later.
Prerequisites: Mathematical maturity, including at least the basics of discrete mathematics (e.g. MS-A0401 or MS-A0402) and algorithm design (e.g. CS-E3190 / T-79.4202 or T-106.4100). Familiarity with combinatorics (e.g. MS-C1050) a strong asset.
Grading Scale: 0-5
Language of Instruction: English
Further Information: The contents of the course vary.

CS-E4560 Parallel and Distributed Systems (5 cr)

Responsible teacher: Stavros Tripakis
Level of the Course: The course is only for students who have completed their general studies.
Teaching Period: I - II (Autumn), not lectured in the academic year 2017-2018
Workload: Contact teaching 44 h (2 h lectures per week for 12 weeks and 2 h exercises per week for 10 weeks). Independent work 96 h (preparing for contact sessions, project assignments, peer assessment, revising for the exam). Exam 3 h.
Learning Outcomes: After completing this course, you will be able to define the behavior of parallel and distributed systems in a rigorous way, discuss the challenge of concurrency-related design errors, and explain central analysis techniques for verifying parallel and distributed systems. You will be able to construct accurate formal models of small parallel and distributed systems and use a model checking tool to automatically verify several standard properties of the models. You will also be able to explain the central difficulties in analyzing systems caused by the state explosion problem, explain and apply central theoretical concepts of the area, and modify your models to reduce state explosion.
Content: Modelling of parallel and distributed computer systems. Theoretical aspects of concurrent systems. Basics of specification methods including temporal logic. Algorithms and tools for computer aided verification of properties.
Assessment Methods and Criteria: Project assignments (20%), in-class exercises prepared at home (20%), and exam (60%).
Study Material: Lecture slides, tutorial problems, and tutorial solutions.
Substitutes for Courses: Replaces former courses T-79.4302 / T-79.4301 Parallel and Distributed Systems.
Prerequisites: Basic theoretical computer science including automata theory (e.g. CS-C2150 / ICS-C2000 Theoretical Computer Science), logic in computer science (e.g. CS-E3200 / T-79.4101 Discrete Models and Search), and basics of multithreaded programming (e.g. CS-A1121 / CSE-A1121 Basic Course in Programming Y2).

Grading Scale: 0-5

Language of Instruction: English.

CS-E4580 Programming Parallel Computers (5 cr)

Responsible teacher: Jukka Suomela

Status of the Course: Optional course of the Game Design and Production major.

Level of the Course: Master’s level

Teaching Period: V (Spring 2018)

Workload: Lectures: 12 h (1 lecture per week). Exercise sessions: 24 h (2 meetings per week). Programming assignments and other independent work: 97 h.

Learning Outcomes: After this course, you will know how to write computationally intensive C or C++ code that makes an efficient use of dozens of CPU cores. You will learn how to partition large-scale computations between multiple processor cores, and how to choose the best memory layout for your data structures. You will also get hands-on experience of offloading computations from CPUs to GPUs. You will learn new kinds of algorithm design techniques that are relevant in the context of parallel computers, and you will also learn which of these techniques actually work in practice on modern multicore CPUs and GPUs.

Content: This is a practical hands-on course on algorithm engineering for modern parallel computers. The students will learn how to design programs that make the best possible use of the computing power of multicore CPUs and GPUs. The course projects will cover both numerical and combinatorial problems; the sole objective is to solve the task at hand in the shortest possible time. We will learn a whole range of techniques for speeding up computations, from bit manipulation hacks and special CPU instructions to high-level techniques such as choosing the right memory layout that makes the best possible use of the cache hierarchy. The main tools that we will use are C or C++, OpenMP or Intel TBB, and OpenCL or CUDA.

Assessment Methods and Criteria: Programming exercises.

Study Material: Available online.

Substitutes for Courses: ICS-E4020 Programming Parallel Computers

Prerequisites: No prior knowledge of parallel programming is needed. Students should have a good understanding of computer programming, algorithms and data structures, and a working knowledge of either C or C++ programming language. While this course is primarily targeted to Master students, advanced Bachelor students are welcome to join if they have sufficient background knowledge and programming skills. At the minimum, students should have completed all 1st year and 2nd year courses of their Bachelor degree.

Grading Scale: 0-5

Language of Instruction: English

CS-E4590 Competitive Programming(V) (2-5 cr)

Responsible teacher: Jukka Suomela

Level of the Course: The course is suitable for both bachelor’s and master’s students.

Teaching Period: I-II (Autumn 2017)

Workload: Depends on the assignments.

Learning Outcomes: You will learn how to solve algorithmic programming challenges, both individually and as a team. You will be able to design and implement efficient algorithms for challenging computational problems, in practice, quickly and correctly.

Content: This is a practical hands-on course. We will meet once a week in a computer lab and organise a mini-contest. During the course, you will also take part in NCPC, Nordic Collegiate Programming Contest.
Assessment Methods and Criteria: Programming challenges.
Study Material: Available online.
Prerequisites: Students are expected to have a working knowledge of computer programming, algorithms, and data structures, and preferably some practical experience with C or C++ programming languages.
Grading Scale: pass/fail
Language of Instruction: English
Further Information: The content of the course varies.

CS-E4600 Algorithmic Methods of Data Mining (5 cr)
Responsible teacher: Aristides Gionis
Teaching Period: I - II (Autumn 2017)
Workload: 24 + 12 (4 + 2)
Learning Outcomes: The students will familiarize themselves with basic data-mining principles and methods. The course will cover different problem scenarios, such as, pattern discovery, clustering, and ordering, as well as, analysis of different types of data, such as, sets, graphs, and sequences. The students will develop their analytical techniques to cope with challenging data-analysis problems. They will also develop their practical skills through programming assignments and experimentation with real data.
Content: The course covers general topics in data mining, such as pattern discovery, similarity search, data clustering, graph mining, ranking and ordering problems, stream computation, and distributed analysis of data, such as map-reduce.
Assessment Methods and Criteria: Take-home homeworks, programming assignments, and in-class final exam.
Study Material: Lecture slides and online lecture notes.
Substitutes for Courses: T-61.5060 Algorithmic Methods of Data Mining
Prerequisites: Basic mathematics, statistics, and basic courses on algorithms design.
Grading Scale: 0-5
Language of Instruction: English

CS-E4610 Modern Database Systems (5 cr)
Responsible teacher: Aristides Gionis
Level of the Course: Master's level
Teaching Period: III-IV (Autumn 2017 and Spring 2018)
Workload: Lectures: 2h/week, Independent study: 2h/week, Homeworks: 4h/week, Projects: 20h total
Learning Outcomes: Upon completion of the course, the students should be able to understand and cope successfully with various aspects of data management in modern database systems. Emphasis will be given in managing data that have complex structure, such as, text data, web data, social data, etc. Algorithms for approximate query answering and scalable data processing will be studied. The students will also have the opportunity to study platforms for managing big data, such as, map-reduce, platforms for data streams, and platforms for graph data.
Content: A tentative list of topics includes: algorithms for query optimization, data warehousing and OLAP, approximate query answering, scalable data analysis, managing text data, managing web data, managing semi-structured data, distributed hash-tables, data cleaning, platforms for big data.
Assessment Methods and Criteria: Take-home homeworks, programming assignments, and in-class final exam.
Study Material: Lecture slides and online lecture notes.
Substitutes for Courses: ICS-E5040 Modern Database Systems
Prerequisites: Basics in mathematics and computer science. Knowledge of data structures.
Grading Scale: 0-5
Language of Instruction: English

CS-E4620 Introduction to Analytics and Data Science (2 cr)
Responsible teacher: Aristides Gionis
Status of the Course: Compulsory course of the Analytics and Data Science Minor.
Level of the Course: Master's level
Teaching Period: I (Autumn 2017)
Workload: There is no homework, but attendance is compulsory.
Content: The purpose of the course is to give a short introduction to the emerging area of analytics and data science. It serves the purpose of providing a short overview of he subareas and the topics covered in the “Analytics and Data Science” module. The course will be structured by guest lectures of the professors affiliated with the module.
Assessment Methods and Criteria: Passing the course will be based only on attendance.
Study Material: The slides used for presentation will become available.
Substitutes for Courses: ICS-E4010 Introduction to Analytics and Data Science
Grading Scale: pass/fail
Language of Instruction: English

CS-E4800 Artificial Intelligence (5 cr)
Responsible teacher: Tomi Janhunen; Alex Jung
Status of the Course: Optional course of the Game Design and Production major.
Level of the Course: Bachelor's and Master's level
Teaching Period: III - IV (Spring 2018)
Workload: Lectures 20h, exercise sessions 20h, independent work 90h, examination 3h.
Learning Outcomes: Artificial intelligence (AI) tackles complex real-world problems, such as question answering, speech recognition, social network analysis, and task scheduling, with rigorous mathematical methods and tools. The goal of this course is to give an in-depth introduction to AI methodology while approaching the topic from the perspective of concrete application problems. Having completed the course, you have gained a comprehensive overview of AI and understand its fundamental principles related to machine learning and logical reasoning. You have excellent premises for solving real-world problems with modern AI techniques and building intelligent systems by implementing such techniques.
Content: The course presents a range of central AI techniques and provides the students with an extensive toolbox for solving problems in practice. For applications that require high degree of adaptation, specific techniques such as (deep) machine learning, reinforcement learning, and graphical models are included. These methods are instrumental for decision under uncertainty. For the purposes of knowledge representation and reasoning, different logical representations such as formulas, circuits, and rules are covered. These representations establish the foundations for declarative problem solving and enable the use of state-of-the-art solver technology to search for solutions. The course also encourages the students to combine the logical and machine learning perspectives when solving future problems.
Assessment Methods and Criteria: Compulsory programming assignments, tutorial exercises, and exam. The overall course grade depends on the points earned from these sources.
Study Material: Electronic material made available at MyCourses.
Substitutes for Courses: ICS-E4000 Artificial Intelligence
Prerequisites: Programming skills (CS-A1110 or equivalent), data structures and algorithms (CS-A1140 or equivalent), basics of probability theory (MS-A050* or equivalent).
Grading Scale: 0-5
Language of Instruction: English
CS-E4820 Machine Learning: Advanced Probabilistic Methods (5 cr)

Responsible teacher: Pekka Marttinen
Level of the Course: Master’s level
Teaching Period: III - IV (Spring 2018)
Workload: 20 + 20 (2 + 2)

Learning Outcomes: After the course, the student understands how Bayesian networks are constructed with conditional independence assumptions and how they are applied in modeling of joint probability distributions. The students can explain the structure and usage of common probabilistic models in machine learning, such as Gaussian mixture models and factor analysis models. The students can apply Bayes’ theorem for computing probability statements and understand the fundamental role of Bayes’ theorem in probabilistic inference. The coupling of inference and learning is understood in the context of latent variable models and the EM algorithm. Student knows approximate inference techniques for complex models, where exact probabilistic inference can not be applied. Furthermore, they can translate probabilistic models, inference and learning algorithms into practical computer implementations.

Content: The course covers probabilistic concepts in machine learning: independence, conditional independence, mixture models, EM algorithm, Bayesian networks, computational algorithms for exact and approximate inference, prior distributions. The course emphasizes understanding fundamental principles and their use in practical machine learning problems.

Assessment Methods and Criteria: Combination of exercises, project, and exam (details provided on the first lecture).

Study Material: David Barber, Bayesian Reasoning and Machine Learning. Cambridge University Press, 2012.

Substitutes for Courses: Replaces the former course T-61.5140 Machine Learning: Advanced Probabilistic Methods and T-61.5040 Learning Models and Methods.

Prerequisites: CS-E3210 / T-61.3050 Machine Learning: Basic Principles

Grading Scale: 0-5

Language of Instruction: English

CS-E4830 Kernel Methods in Machine Learning (5 cr)

Responsible teacher: Juho Rousu
Level of the Course: Master’s and Doctoral’s level
Teaching Period: I-II (Autumn 2017)
Workload: Lectures and exercises

Learning Outcomes: After attending the course, the student knows how kernel methods can be used in various machine learning tasks, including classification, ranking and preference learning, as well as learning with multiple data sources and targets. The student knows how convex optimization methods can be used to efficiently train kernel-based models. The student knows how structured data such as sequences, hierarchies and graphs can be tackled through kernel methods.

Assessment Methods and Criteria: Exercises and exam.

Study Material: Shawe-Taylor and Cristianini: Kernel Methods for Pattern Analysis, Cambridge University Press, 2004. Slides and research papers provided during the course.

Substitutes for Courses: ICS-E4030 Kernel Methods in Machine Learning
Prerequisites: Bachelor’s degree in computer science and the course CS-E3210 / T-61.3050 Machine Learning: Basic principles (or equivalent knowledge).

Grading Scale: 0-5
Language of Instruction: English

CS-E4840 Information Visualization (5 cr)

Responsible teacher: Aristides Gionis
Level of the Course: Master’s level
Teaching Period: IV (Spring 2018)
Workload: 24 + 12 (4 + 2)
Learning Outcomes: Information visualization offers instruments for reasoning about quantitative information, analyzing and communicating statistical information. The course overviews the main typologies of data graphics (data-maps, time-series, space-time narrative, relational diagrams, graphs and methods for dimensionality reduction) and provides a language for discussing data visualizations combined with a knowledge of the human perception of visual objects.
Content: The course teaches how to visualize information effectively by using the statistical methods, combined with knowledge of the human perception and the basics of data graphics.
Assessment Methods and Criteria: Examination and exercise work.
Substitutes for Courses: T-61.5010 Information Visualization
Prerequisites: Basic mathematics courses.
Grading Scale: 0-5
Language of Instruction: English

CS-E4850 Computer Vision (5 cr)

Responsible teacher: Juho Kannala
Level of the Course: Master’s (suitable for 1st year Master students) and Doctoral’s level.
Teaching Period: I - II (Autumn 2017)
Workload: 24 + 24 (2 + 2) and project work
Learning Outcomes: After the course, the student is familiar with basic concepts and methods of computer vision. The student understands the basic principles of image-based 3D reconstruction and is familiar with techniques used for automatic object recognition from images. The student can design and implement common computer vision methods and apply them to practical problems with real-world image data.
Content: Image formation and processing, feature detection and matching, motion estimation, structure-from-motion, object recognition, image-based 3D reconstruction. The course gives an overview of algorithms, models and methods, which are used in automatic analysis of visual data.
Assessment Methods and Criteria: Combination of exercises, project and exam (details are provided on the first lecture).
Substitutes for Courses: T-61.5070 Computer Vision
Prerequisites: Basic mathematics courses.
Grading Scale: 0-5
Language of Instruction: English

CS-E4870 Research Project in Machine Learning and Data Science (5-10 cr)

Responsible teacher: Aristides Gionis
Teaching Period: varies
Workload: Seminars. Independent or group work (discussions with supervisor, programming, reporting, preparation of presentation).
Learning Outcomes: After the course, the student knows how to carry out a scientific project and write a scientific report in the field of computer and information science.

Content: A project work, which can be done in a group, from the field of computer and information science.

Assessment Methods and Criteria: Report and presentation. The course grade is determined by the report (100%).

Substitutes for Courses: T-61.5910 Research Project in Computer and Information Science

Grading Scale: 0-5

Language of Instruction: English

CS-E4880 Machine Learning in Bioinformatics (5 cr)
Responsible teacher: Juho Rousu
Teaching Period: I-II (Autumn 2017)
Workload: Learning diaries, poster presentation and written report.

Learning Outcomes: The students will learn how machine learning used in different bioinformatics applications and get hands-on knowledge on the use of machine learning in project work. Students will get training on scientific work, presenting research orally and in written form and giving feedback on other students's work.

Content: Machine learning is one of the cornerstone technologies in bioinformatics, used in numerous tools and applications. This course probes the state of the art in selected machine learning problems and the associated methods in bioinformatics, through introductory lectures and project work. The introductory lectures present an overview of the problem domain, and the set of methods to be applied in the projects.

Assessment Methods and Criteria: To be specified in MyCourses at the start of the course.

Study Material: Collection of articles.

Substitutes for Courses: T-61.6080 Special Course in Bioinformatics II, CS-E4860 Special Course in Bioinformatics.

Grading Scale: 0-5.

Language of Instruction: English.

CS-E4890 Deep Learning (5 cr)
Responsible teacher: Jyri Kivinen
Level of the Course: Master's level.
Teaching Period: II (Autumn 2017)
Workload: 2 lectures per week (1h 30 min total each), one (primarily computer) exercise session per week (1 h 30 min total each), and the rest for studying the course material, doing exercises, the mini-project, and the examination.

Learning Outcomes: Understanding of the general principles of neural networks and deep learning, and the central neural network and deep learning methods discussed in the course. After the course, you should be able to apply them to real-world data sets.

Content: The course takes elements (e.g. contains material) from prior Machine Learning and Neural Networks'-courses and 'Deep Learning'-special courses. Topics will include feed-forward neural networks, convolutional neural networks, optimization, regularization, sequence modelling, practical methodologies, applications, linear factors models, and autoencoders. Implementing algorithms on a computer are a part of the course and the programming language is Python. Python-based softwares that allow for symbolic differentiation will also be used, Theano will be recommended, supported, and there will be teaching on it, along with some Python for data analysis.

Assessment Methods and Criteria: Arrangements: Lectures, exercise sessions, an examination.

Assessment Methods and Criteria: Exercise sets, mini-project, an examination.

Study Material: Material produced for the course such as lecture slides, external

Substitutes for Courses: CS-E4810 Machine Learning and Neural Networks.

Prerequisites: CS-E3210 Machine Learning: Basic Principles’-course or knowledge, skills and experience equivalent to that obtained from completing the course; basic courses in mathematics and probability; Python programming basics.

Grading Scale: 0-5.

Language of Instruction: English.

CS-E4900 User-Centered Methods for Product and Service Design (5 cr)

Responsible teacher: Johanna Kaipio; Mika Nieminen; Marko Nieminen

Status of the Course: Compulsory course of the Software and Service Engineering major (UCD & SDE tracks), Information networks major (UCD track), ICT Innovation major (HCID track) and Usability School minor.

Level of the Course: Master’s level

Teaching Period: I – II (Autumn 2017)

Workload: Lectures and workshops 20h, reading study materials 10h, writing and reviewing assignments 30h, group work 75h.

Learning Outcomes: After the course, you know the basic methods for user research. You understand and can describe different methods for use in the beginning of the user-centered design process and select appropriate methods for a given user research problem. You know how to apply a number of methods in a simple user research case. You will be able to find and analyze relevant new information in the field and concisely present research results to an audience. You are comfortable with reading academic articles and will be able to write and reference an academically paper properly.

Content: The course introduces the commonly used user-centred user research methods for early stage product and service design, and provides tools to analyze and visualize the gathered data to fuel product and service design.

Assessment Methods and Criteria: Individual assignments (50%) and group work (50%).

Study Material: Lecture materials, selected journal and practitioner articles and complementary materials. Materials are announced in course web site.

Substitutes for Courses: Substitutes the former course CSE-E5800 User-Centered Methods for Product and Service Design and T-121.5151 Methods for User-Centred Product Development.

Prerequisites: CS-C3120 Human-Computer Interaction / CSE-C3800 User Interfaces and Usability or equivalent basics in user-centred design and usability.

Grading Scale: 0-5, may be graded with pass/fail

Registration for Courses: Enrollment in WebOodi.

Language of Instruction: English

Further Information:
The number of participants will be limited (60). Registrations will be prioritized in the following order:

1) The students that have the course as a mandatory part in SSE, Information Networks, ICT Innovation, and uSchool majors,
2) The students that have the course as a mandatory part in SSE, Information Networks, ICT Innovation, and uSchool minors,
3) The students that have the course as an elective part of their major,
4) The students that have the course as an elective part of their minor, and
5) All other students based on registration order.

CS-E4910 Software Project 3 (5-8 cr)

Responsible teacher: Jari Vanhanen; Casper Lassenius
Status of the Course: Compulsory course of the Software Engineering track in the
Software and Service Engineering major.
Level of the Course: Master’s level
Teaching Period: I-V (Autumn 2017 & Spring 2018)
Workload: Lectures 15h (period I only), project work 25h * (credits – 1)
Learning Outcomes: You learn to act as a Scrum Master in a software project.
Content: The course consists of a software development project which will be done for a
real client from industry or academia. The projects use the Scrum framework which is
presented in the lectures before the project. The activities include project management,
requirements specification, design, coding, quality assurance, and system delivery. You
will work as a Scrum Master in a project team whose developers are students from the
CS-C2130 & CS-C2140 Software Project 1&2 courses.
Assessment Methods and Criteria: Project work.
Substitutes for Courses: Substitutes former courses CSE-E5600 Software Project 3
and T-76.5115 Software Development Project II (6-8 cr).
Prerequisites: Mandatory Prerequisites: CS-C2130 & CS-C2140 Software Project 1 & 2,
CS-C3150 Software Engineering Recommended Prerequisites: CS-C3180 Software
Design and Modelling, CS-E4930 Software Processes and Projects / CSE-E4600
Software Project Management, CS-E4940 Requirements Engineering, T-76.5613
Software Testing and Quality Assurance
Grading Scale: 0-5
Registration for Courses: Registration via WebOodi. Please see WebOodi for
registration dates.
Language of Instruction: English.

CS-E4920 Portfolio in Software and Service Engineering (V)(V) (1-5 cr)
Responsible teacher: Marjo Kauppinen; Jari Vanhanen
Level of the Course: Master’s level
Teaching Period: I, III, V (separate iterations in each).
Workload: Each iteration yields one credit and includes 6-12 hours of contact sessions
and 10-20 hours of individual or group work.
Learning Outcomes: After taking this course, you are able to plan your studies in
Software and Service Engineering major; analyze what you have learned from the
courses and work experience so far; and create a learning portfolio. In addition, you are
able to recognize your professional identity and network with other students in the
Software and Service Engineering major.
Content: Reflection and planning of the studies in Software and Service Engineering
major. Reflection and analysis of the professional identity and work experience.
Assessment Methods and Criteria: Study plan and learning portfolio; details vary
between each iteration.
Study Material: To be announced later.
Substitutes for Courses: CSE-E5695 Portfolio in Software and Service Engineering
Prerequisites: This course is meant only for the students in Software and Service
Engineering major.
Grading Scale: pass/fail
Registration for Courses: Registration via WebOodi.
Language of Instruction: English
Further Information: The course is modular; the student can participate in separate 1-2
cr iterations to accumulate up to 5 credits. The course takes place in three iterations: one
in the beginning of period I, one in the beginning of period III; and one in the end of period
V.
The course is highly recommended to be started in the first period I of the major studies.
However, students in any phases of their major studies are welcome to participate the
course. Please see the course home page for further information. Only for students in the
Software and Service Engineering major.
CS-E4930 Software Processes and Projects (5 cr)

Responsible teacher: Maria Paasivaara; Ville Heikkilä; Casper Lassenius
Status of the Course: Optional course of the Software and Service Engineering major.
Level of the Course: Master’s level
Teaching Period: IV-V (Spring 2018)
Workload: Lectures 40 h (4 h / week), Independent work 95 h: Lecture diaries, assignments.
Learning Outcomes: You can create a project plan and schedule for a small-scale software project, you can discuss about different kinds of software project types (customer specific, product development and distributed project), you can apply different methods for software project management, you can select the most appropriate process model for a software project.
Content: Software project planning and management. Project organization, project/process models, different project types (bespoke, software product and distributed projects), communication and global software development.
Assessment Methods and Criteria: Assignments and lecture diaries.
Study Material: Article collection + lecture slides
Substitutes for Courses: Replaces former courses CSE-E4600 / T-76.5612 Software Project Management.
Prerequisites: CS-C3150 / CSE-C3610/T-76.3601 (Introduction to) Software Engineering, TU-A1100 Tuotantotalous 1 (industrial engineering). In case Bachelor’s Degree has been awarded in a university other than Aalto University, equivalent courses are acceptable.
Grading Scale: 0-5
Registration for Courses: Registration via WebOodi.
Language of Instruction: English
Further Information: The number of participants will be limited to 40. Registrations will be prioritized in the following order:
1) The students that have the course as a mandatory part of their major,
2) The students that have the course as a mandatory part of their minor,
3) The students that have the course as an elective part of their major,
4) The students that have the course as an elective part of their minor,
5) Other students of the Department of Computer Science, and
6) All other students.
Inside the aforementioned classes, the selection is based on the chronological registration order.

CS-E4940 Requirements Engineering (5 cr)

Responsible teacher: Marjo Kauppinen
Status of the Course: Optional course of the Software and Service Engineering major.
Level of the Course: Master’s level
Teaching Period: III – V (Spring 2018)
Workload: Study sessions (lectures): 30, Assignments and individual work: 50h, Group assignment and workshops: 50h.
Learning Outcomes: You know and can explain what the key areas and activities of requirements engineering (RE) are. You also learn to select good RE practices for development projects. After the course, you can relate RE to other processes. You also learn to combine and apply different RE approaches when creating software-intensive products and services.
Content: After the course, the student will have a broad understanding of requirements engineering and its role in system, product and service development. The key topics of the course are: 1) flexible usage of good RE practices, 2) customer value creation, 3) linking RE with long-term planning and development, and 4) RE from the perspectives of
creativity, co-creation and services.

Assessment Methods and Criteria: Assignments and oral examination.

Study Material: A set of articles that relate to the key topics of the course.

Grading Scale: 0-5

Registration for Courses: Registration via WebOodi.

Language of Instruction: English

Further Information:
The number of participants will be limited (40). Registrations will be prioritized in the following order:
1) the students of CCIS / SSE major;
2) students that have the course as a mandatory or elective part of their major or minor;
3) all other students based on registration order.

CS-E4950 Software Architectures (5 cr)

Responsible teacher: Kari Smolander

Level of the Course: The course is only for students who have completed their Bachelor's Degree.

Teaching Period: III-V (Spring 2018)

Workload: Contact sessions 30 h, project work 65 h, individual work 35 h

Learning Outcomes:
• analyze the architecturally significant requirements and scenarios based on the stakeholder concerns for an open-ended, complex problem.
• design a high-level architecture that tries to address the architecturally significant requirements and scenarios; the design is created iteratively and as team work.
• model and document the design and design decisions using multiple views and viewpoints and in a consistent fashion.
• evaluate whether the high-level architecture design addresses the scenarios.
• analyze and present all aforementioned orally.

Content: The course content in a nutshell: How to design a software architecture that meets the needs of its stakeholders? The course takes a practical hands-on approach: the content is applied in the project work that lasts throughout the course.

Assessment Methods and Criteria: Project work, weekly learning task, self and peer evaluation, optional exam.

Study Material: Lectures, reading material.

Substitutes for Courses: Replaces the former course T-76.5150 Software Architectures

Prerequisites: CS-C3180 / CSE-C3600 Software Design and Modelling OR similar knowledge. Also, it is highly advisable to have experience in programming and software development.

Grading Scale: 0-5

Registration for Courses: Registration via WebOodi.

Language of Instruction: English

Further Information: The course is targeted especially for software and service engineering major / minor and ICT in Business students. The course is also suitable for those students who have previous work experience as software developers and aspire to become software architects in the future.

CS-E4960 Software Testing and Quality Assurance (5 cr)

Responsible teacher: Casper Lassenius

Level of the Course: The course is only for students who have completed their Bachelor's Degree.

Teaching Period: II-III (Autumn 2017 and Spring 2018)

Workload: Lectures 26 h, group work 52 h, individual work 39 h

Learning Outcomes: You know and can define the essential concepts of testing and software quality. You understand the objectives of software testing and the significance of
testing and quality assurance as part of software engineering. You know different ways of organizing testing, common testing techniques as well as other quality practices. You can select and apply appropriate quality practices in different situations and understand the strengths and weaknesses of the practices. You understand the purposes that testing tools and test automation can be used and the typical challenges of test automation.

Content: Basics of software testing, concepts, testing techniques and reviews. Test planning, management and tools. The role of testing in quality assurance and quality assurance as part of software process.

Assessment Methods and Criteria: Lectures, assignments, exercise work and possibly exam.

Study Material: Delivered to the students when the course begins.

Substitutes for Courses: Replaces the former course T-76.5613 Software Testing and Quality Assurance

Prerequisites: CS-C3150 / CSE-C3610 Software Engineering (mandatory), CS-C3600 / CSE-C3600 Software Design and Modelling (recommended).

Grading Scale: 0-5

Language of Instruction: English

CS-E4970 Individual Study in Software Business(V) (2-16 cr)

Responsible teacher: Marjo Kauppinen

Teaching Period: According to agreement.

Learning Outcomes: Based on this course, the student can either analyze, plan, and make recommendations on a practical technology business situation or prepare a scientific study in the field.

Content: Varies according to situation and agreement.

Assessment Methods and Criteria: Varies according to situation and agreement.

Study Material: Agreed with the responsible teacher.

Substitutes for Courses: Replaces the former course T-128.5780 Individual Study in Software Business

Grading Scale: 0-5

Language of Instruction: English

Further Information: The contents of the course vary.

CS-E5000 Seminar in Software and Service Engineering(V) (5 cr)

Responsible teacher: Martti Mäntylä; Marjo Kauppinen; Casper Lassenius; Marko Nieminen

Status of the Course: Compulsory or optional course depending on the track of the Software and Service Engineering major.

Level of the Course: Master’s level

Teaching Period: I - II (Autumn 2017), III - V (Spring 2018)

Learning Outcomes: Students are able to search information related to a research topic, analyze information from different sources and write a scientific report in English. Students also improve their skills to carry out Master’s Thesis.

Content: The contents of this course vary.

Substitutes for Courses: Replaces former courses CSE-E5690 Seminar in Software and Service Engineering, T-76.5650 Seminar in Software Engineering, T-86.5200 Service Research Seminar, and T-121.5900 Seminar on User Interfaces and Usability.

Grading Scale: 0-5

Registration for Courses: Registration via WebOodi.

Language of Instruction: English or Finnish.

Further Information: Language of the instruction is Finnish or English. Language will be announced in MyCourses at the beginning of the course. This seminar is especially targeted to students planning or carrying out their Master’s Thesis.

CS-E5001 Research Seminar in Software and Service Engineering(V) (5 cr)
Responsible teacher: Martti Mäntylä; Marjo Kauppinen; Kari Smolander; Casper Lassenius; Marko Nieminen

Status of the Course: Compulsory or optional course depending on the track of the Software and Service Engineering major.

Level of the Course: Master’s level

Teaching Period: I - II (Autumn 2017), III - V (Spring 2018)

Learning Outcomes: Students learn to conduct research on a contemporary topic in software and service engineering. This includes searching for information related to the research topic, optionally collecting empirical data, as well as analyzing and synthesizing the information, and the reporting of the findings in a scientific report. The seminar prepares the students for writing scientific publications, as well as their Master’s thesis.

Content: The contents of this course vary.

Substitutes for Courses: Replaces former courses T-76.5655 Research seminar in Software Engineering and CSE-E5670 Seminar on Industrial Internet.

Grading Scale: 0-5

Language of Instruction: English or Finnish

CS-E5002 Special Course in Software and Service Engineering(V) (1-10 cr)
Responsible teacher: Martti Mäntylä; Marjo Kauppinen; Casper Lassenius; Marko Nieminen

Level of the Course: Master’s level

Teaching Period: (Arranged when needed)

Content: The contents of this course vary.

Substitutes for Courses: Replaces former courses CSE-E5697 Special Course in Software and Service Engineering and CSE-E6250 Digital Service Design, Course with Varying Content.

Grading Scale: 0-5

Language of Instruction: English

CS-E5004 Individual Studies in Software and Service Engineering(V) (1-10 cr)
Responsible teacher: Martti Mäntylä; Marjo Kauppinen; Casper Lassenius; Marko Nieminen

Level of the Course: Master’s level

Teaching Period: (Arranged when needed)

Content: The scope and content of the course must be agreed with the teacher before starting the course.

Substitutes for Courses: Replaces former courses CES-E5699 Individual Studies in Software and Service Engineering (V), T-76.5699 Ohjelmistotuotannon yksilölliset opinnot and T-121.5850 Individual Course on Usability.

Grading Scale: 0-5

Language of Instruction: English or Finnish.

CS-E5005 Research Methods in Software and Service Engineering (5 cr)
Responsible teacher: Kari Smolander

Level of the Course: The course is only for students who have completed their Bachelor’s Degree.

Teaching Period: I-II (Autumn 2017)

Workload: Lectures 14 h, individual studies 16 h, assignment 70 h, exam and reading package 30 h.

Learning Outcomes: Students are able to understand scientific research and evaluate the validity and reliability of research results. They are able to plan an empirical study, collect and analyze data, and report the results. Students improve their skills to carry out Master’s Thesis.

Content: The goal is to introduce the participants to scientific research methods,
especially to the approaches and processes used in the field of software engineering. In addition, the course provides students practice on formulating research questions and planning empirical studies.

Assessment Methods and Criteria: Assignments, classroom activity and an exam.

Study Material: To be announced later.

Substitutes for Courses: Replaces the former course T-76.5050 Methods for Software Engineering and Business Research.

Course Homepage: https://mycourses.aalto.fi/course/view.php?id=8880

Grading Scale: 0-5

Registration for Courses: Registration via WebOodi.

Language of Instruction: English

Further Information:
This seminar is especially targeted to students planning or carrying out their Master’s Thesis.

The number of participants will be limited (30). Registrations will be prioritized in the following order:
1) the students of CCIS / SSE major;
2) Information networks students;
3) students that have the course as a mandatory or elective part of their major or minor;
4) all other students based on registration order.

CS-E5006 Doctoral Seminar(V) (2-8 cr)

Responsible teacher: Marjo Kauppinen; Sari Kujala

Teaching Period: I-IV, (Autumn & Spring)

Learning Outcomes: The goal of the doctoral seminar is to support Ph.D. students in their research and writing work. The essential feature of the seminar is that participants are presenting their research plans and results, discussing with each other and sharing experiences. The goal is that Ph.D. students get feedback on their research work and texts. They also learn to analyze and review scientific articles.

Content: In addition to students’ own presentations, there are theme lectures and expert presentations. The goal of theme lectures is give information about Ph.D. process and research methods, and how they can be applied in practice. The basic information of the research methods is given in the course T-76.5050 Methods for Software Engineering and Business Research.

Assessment Methods and Criteria: Participation in seminar sessions and seminar presentations.

Substitutes for Courses: Replaces the former course T-76.7656 Doctoral Seminar.

Course Homepage: https://mycourses.aalto.fi/course/view.php?id=10111

Grading Scale: pass/fail

Language of Instruction: English

Further Information: The content of the course varies.

CS-E5100 Introduction to IT Business and Venturing (2 cr)

Responsible teacher: Olli Mutanen

Status of the Course: Optional course of the Software and Service Engineering major.

Part of the Aalto Ventures Program and EIT Master’s Programme in ICT Innovation studies belonging to the 30 ECTS minor on Innovation and Entrepreneurship in ICT.

Level of the Course: Master’s level

Teaching Period: I-II (Autumn 2017)

Workload: This is a 2 ECTS course. The expected student work hours are as follows:
Lectures: 10 h, group assignments and related individual work: 43 h. Assignments consist of working in teams of 5 students, with the organization of the teams’ work managed by each team (course personnel provides support for organization as well as group work guidance). Individual work consists of preparing for lectures and parts of assignments.

Learning Outcomes: Students learn basic characteristics of information technology
business and venturing, importance of new and growing businesses to national economies, process of designing a business model for a new technology-based venture, systematically exploring customers and markets, recognizing and classifying technology and service based business models and analyzing factors in them having effect on the success of a venture.

Content: The lectures and course materials present basic information on the local, European and global IT industry and the significance of growth ventures to national economies. Theory base for technology-based entrepreneurship, markets, customer segments and firm level value creation logic is presented, and different business models based on technology or the related services are discussed. Assignments consist of business model analysis, development and design for real-life high technology startup businesses.

Assessment Methods and Criteria: The course is assessed based on business modeling assignments about real business cases. Participation in lectures firmly supports completing the course.

Study Material: To be announced at the beginning of the course.

Substitutes for Courses: Replaces the former courses CSE-E4751 Introduction to IT Business and Venturing, T-128.4101 Introduction to Software Business and T-128.1000 Introduction to Software Business and Venturing.

Prerequisites: It is recommended that students have obtained basic information about business and software engineering.

Grading Scale: 0-5

Registration for Courses: Registration via WebOodi.

Language of Instruction: English

Further Information: The number of participants will be limited. Registrations will be prioritized in the following order: The students that have the course as a mandatory part of their study program will be prioritized first. The students that are participating in the Aalto Ventures Program minor will be prioritized second. After this, all students are prioritized based on registration order.

CS-E5110 Management of a Technology Venture (5 cr)

Responsible teacher: Timo Nyberg; Olli Mutanen

Status of the Course: Course is part of the Aalto Ventures Program and Master’s Programme in ICT Innovation studies belonging to the 30 ECTS minor on Innovation and Entrepreneurship (I&E) in ICT.

Level of the Course: Master’s level

Teaching Period: I-II (Autumn 2017). Lectures start in the middle of period I (after the course CS-E5100 Introduction to IT Business and Venturing lectures).

Workload: This is a 5 ECTS course (1cr = 27 work hours). The expected student work hours are: Lectures 13 x (2+2) h = 52h (includes pre-lecture material), 2 group assignments 25h + 25h = 50h, and one individual work 33h. The work hours for lectures provide students time to prepare for lectures and to discuss them afterwards. Assignments consist of working in groups.

- **Learning Outcomes:** Interested in managing ICT ventures? Want to free your mind from management preconceptions? The course provides a holistic picture of what entrepreneurs and managers of ICT ventures need to consider when establishing, developing and running their businesses. The course covers: the general processes and roles involved in developing ideas and starting up a new technology-based company or business business organization and projects
 - product and process development in ICT business
 - financing new businesses
 - managing and developing human resources and venture capabilities
 - value creation and capture, intellectual property
 - and other important elements in managing a technology venture.

Lectures include insights from case studies of real firms, and first-hand experiences from
industry guest lecturers.

Content: The course covers the entrepreneurial steps from the partner search and idea generation to the financing rounds and fast growth. The focus is on technology-based entrepreneurship and venture management. The course includes lectures and case studies on real high technology firms, ICT trends, business ecosystems and markets, organization and project management, new product and process development, entrepreneurial finance and human resource development. Tools for e.g. work personality test and competency assessment are available (optional to be used in individual work). The guest lecturers, content, and the case studies vary.

Assessment Methods and Criteria: This course is assessed based on two group assignments maximum 20 points (10 each), and one individual work max 10 points. Maximum point score for the course is 30. Minimum total points required to pass the course is 15. Minimum for passing each group assignment and the individual work is 5 points. There is an optional exam.

Study Material: Lecture material, selected journal and practitioner articles, complementary materials. Materials vary from year to year, and are announced during the lectures.

Substitutes for Courses: Replaces former course CSE-E4755 Management of a Technology Venture (6 op).

Prerequisites: CS-E5100 / CSE-E4751 Introduction to IT Business and Venturing, or similar knowledge.

Grading Scale: 0-5

Language of Instruction: English

Further Information: The number of participants may be limited to 60 students. Registrations will be prioritized in the following order: The students that have the course as a mandatory part of their study program will be prioritized first. The students that are participating in the Aalto Ventures Program minor will be prioritized second. After this, all students are prioritized based on registration order.

CS-E5200 Design Project (10 cr)

Responsible teacher: Mika Nieminen; Marjo Kauppinen; Marko Nieminen

Status of the Course: Compulsory course of the Software and Service Engineering major (SDE track), Information networks major (UCD track) and ICT Innovation major (HCID track).

Level of the Course: Master’s level

Teaching Period: III - V (Spring 2018)

Workload: Lectures 27h (9x3h), workshops 24h (3x8h), group work 180h and pitching sessions 36h (9x4h).

Learning Outcomes: After the course, you will be able to understand and explain the user centered design process for digital services. You can select and apply the correct tools and methods for the various phases of the process. You learn to apply the acquired user knowledge to solve a real-life design problem. You gain insight and experience on how to analyze and evaluate the intermediate design deliverables in an iterative design process. You will know how to present the designs and argue your design decisions in a clear and concise form. You will acquire industry best practices for product and service design with the ability to adapt them to your specific needs.

Content: This course teaches the overall process and practices of user-centered design of digital products and services. The students’ projects produce interactive prototypes starting from the scratch. The course has a hands on learning-by-doing approach with strong industry participation (tutoring).

Assessment Methods and Criteria: Assessment is based on the group effort and all members receive the same grade. Each intermediate pitching session is graded 0-5, the final grade is the arithmetic mean of all scores. An extraordinarily excellent final presentation and prototype may raise the grade by 1.

Study Material: Lecture materials, selected journal and practitioner articles and
complementary materials. Materials are announced in course web site.

Substitutes for Courses: Replaces the former courses CSE-E5888 Design Project, T-121.5350 Strategic User-Centred Design and T-106.5750 Aalto Service Camp.

Prerequisites: CS-E4900 / CSE-E5800 User-Centered Methods for Product and Service Design.

Grading Scale: 0-5, may be graded with pass/fail

Registration for Courses: Enrollment in WebOodi.

Language of Instruction: English

Further Information:

The number of participants will be limited (60). Registrations will be prioritized in the following order:

1) The students that have the course as a mandatory part in SSE, Information Networks, ICT Innovation, and uSchool majors,
2) The students that have the course as a mandatory part in SSE, Information Networks, ICT Innovation, and uSchool minors,
3) The students that have the course as an elective part of their major,
4) The students that have the course as an elective part of their minor, and
5) All other students based on registration order.

CS-E5210 Usability evaluation (5 cr)

Responsible teacher: Marko Nieminen; Johanna Kaipio

Status of the Course: Compulsory course of the Software and Service Engineering major (UCD track) and ICT Innovation major (HCID track).

Level of the Course: Master's level

Teaching Period: IV – V (Spring 2018)

Workload: Lectures and presentations 30h, tutoring 10h, individual assignments + exam 20h, project work 75h.

Learning Outcomes: After the course, you can select suitable usability evaluation methods in various situations, and to argument your choices. You are able to design and carry out usability evaluations, and to communicate your results to customers in order to have an impact on further development.

Content: The course introduces several usability evaluation methods including both usability inspection and user testing methods. The methods are applied in project works conducted in cooperation with companies aiming at an improved prototype of the evaluated system.

Assessment Methods and Criteria: Group work (60%) and individual assignments & exam (40%).

Study Material: Lecture materials, selected journal and practitioner articles and complementary materials. Materials are announced in course web site.

Substitutes for Courses: Replaces the courses CSE-E5810 Usability Evaluation, T-121.5450 Interaction Design and Evaluation.

Prerequisites: CS-E4900 / CSE-E5800 User-Centred Methods for Product and Service or equivalent knowledge in user-centred design and usability.

Grading Scale: 0-5, may be graded with pass/fail

Registration for Courses: Enrollment in WebOodi.

Language of Instruction: English

Further Information:

The number of participants will be limited (25). Registrations will be prioritized in the following order:

1) The students that have the course as a mandatory part in SSE, Information Networks, ICT Innovation, and uSchool majors,
2) The students that have the course as a mandatory part in SSE, Information Networks, ICT Innovation, and uSchool minors,
3) The students that have the course as an elective part of their major,
4) The students that have the course as an elective part of their minor, and
5) All other students based on registration order.

CS-E5220 User Interface Construction (5 cr)

Responsible teacher: Marko Nieminen
Status of the Course: Compulsory course of the Software and Service Engineering major (UCD track).
Level of the Course: Master's level
Teaching Period: II (Autumn 2017)
Workload: Lectures 20h, group group work 95h, independent work 20h.
Learning Outcomes: At this course the students learn user interface and interaction design. After completing the course, students are able to develop an interactive user interface that can be used for usability testing. Students know how to use user-centred principles, guidelines and patterns in the design and implementation of user interfaces.
Content: The design and construction of user interfaces. Use of basic user interface elements and style guides.
Assessment Methods and Criteria: Lectures and examination, exercises.
Study Material: Materials are announced in course web site.
Substitutes for Courses: Replaces former course CSE-E5820 / T-121.5300 User interface construction.
Prerequisites: CS-C3120 Human-computer Interaction / CSE-C3800 User Interfaces and Usability or equivalent basics in user-centred design and usability.
Grading Scale: 0-5, may be graded with pass/fail
Registration for Courses: Enrollment in WebOodi.
Language of Instruction: English
Further Information: The number of participants will be limited (100). Registrations will be prioritized in the following order:
1) The students that have the course as a mandatory part in SSE, Information Networks, ICT Innovation, and uSchool majors,
2) The students that have the course as a mandatory part in SSE, Information Networks, ICT Innovation, and uSchool minors,
3) The students that have the course as an elective part of their major,
4) The students that have the course as an elective part of their minor, and
5) All other students based on registration order.

CS-E5300 Enterprise Systems Architecture (5 cr)

Responsible teacher: Martti Mäntylä; Kari Hiekkanen
Status of the Course: Compulsory course of the Enterprise Systems track in Software and Service Engineering major.
Level of the Course: Master's level
Teaching Period: I (Autumn 2017)
Workload: Lectures, assignments and exam.
Learning Outcomes: After the course you understand of the role of technology and information systems (IS) within an enterprise context, understand the concepts of the core business processes their relationship to information systems, understand the role of and the need for an enterprise architecture.
Content: Introduction to the roles of information in general and different information systems in particular within an enterprise context, the fundamentals of an an enterprise architecture, its management and governance. The core information systems of an enterprise, such as enterprise resource planning (ERP), customer relationship management (CRM), data warehousing (DW), business intelligence (BI), product data management (PDM), enterprise content management (ECM). The course covers both theory and relevant practical examples from different enterprises and industry sectors.
Assessment Methods and Criteria: Lectures, assignments and examination.
Study Material: Agreed separately.
Substitutes for Courses: Replaces former courses CSE-E4650 / T-86.5141 Enterprise Systems Architecture
Grading Scale: 0-5
Registration for Courses: Registration via WebOodi.
Language of Instruction: English
Further Information:
The number of participants will be limited (100). Registrations will be prioritized in the following order:
1) the students of CCIS / SSE major;
2) students that have the course as a mandatory or elective part of their major or minor;
3) all other students based on registration order.

CS-E5310 ICT Enabled Service Business and Innovation (5 cr)

Responsible teacher: Martti Mäntylä; Kimmo Karhu; Mikko Heiskala
Level of the Course: Master's level
Teaching Period: I-II (Autumn 2017, lectures begin most likely on fifth week of period I; check course web pages for confirmation)
Workload: Lectures 30h + Lecture self-reflection 30h Preparation for lectures (e.g. pre-reading) 27.5h
Weekly assignments (min 5) OR exam preparation 50h Total 137.5h
Learning Outcomes: After the course you'll understand the role of ICT and software in driving service business and innovation and can use theoretical concepts to analyse real world ICT enabled services. You will also become familiar with current trends that drive digital service business and innovation.
Content: A high-level view to digitalisation and servitisation of economy, industries, and companies. How ICT affects service business and innovation. Platforms, ecosystems, two-sided markets and other relevant concepts for understanding ICT enabled digital service business and innovation. Current topics and trends driving innovation in ICT enabled services business. Visiting case lectures from industry, startups, and Aalto University research illustrating the theoretical content of the course in practice.
Assessment Methods and Criteria: Participation in lectures (pass/fail), weekly assignments total grade (0-5) OR exam (0-5). Check course web pages for confirmed details before course begins (e.g. lecture participation limit; it'll be around 50%-60%).
Study Material: Lectures and collection of articles delivered on the course web pages.
Substitutes for Courses: Replaces course CSE-E4660 / T-86.5310 ICT Enabled Service Business and Innovation (and its predecessor T-86.5300 Information and Communication Technology Enabled Commerce).
Prerequisites: No prerequisites but basic knowledge of IT business and information systems concepts and TU-E2000 Aalto Introduction to Services are recommended.
Grading Scale: 0-5
Registration for Courses: Via WebOodi
Language of Instruction: English
Further Information:
The course is open for Aalto students. The number of participants will be limited (80). Registrations will be prioritized in the following order:
1) the students of CCIS / SSE major;
2) students that have the course as a mandatory or elective part of their major or minor;
3) all other students based on registration order. Minor changes to the course information is possible. Check the course web pages before the course begins.
CS-E5320 Seminar on Enterprise Information Systems(V) (3-10 cr)

Responsible teacher: Martti Mäntylä; Kari Hiekkanen

Status of the Course: Optional course of the Enterprise Systems track in the Software and Service Engineering major.

Level of the Course: Master’s level

Teaching Period: (Arranged according to agreement)

Learning Outcomes: You understand topical issues related to Enterprise Information Systems (EIS), IT Governance, Enterprise Architecture (EA), and Business Informatics and Intelligence.

Content: The content of this course varies.

Assessment Methods and Criteria: Agreed separately.

Study Material: Agreed separately.

Substitutes for Courses: Replaces former courses CSE-E5650 / T-86.5165 Seminar on Enterprise Information Systems.

Prerequisites: CS-E5300 / CSE-E4650 Enterprise Systems Architecture, recommended CS-E5330 / CSE-E4655 IT Governance.

Grading Scale: 0-5

Registration for Courses: Registration via WebOodi.

Language of Instruction: English

Further Information:
The number of participants will be limited (30). Registrations will be prioritized in the following order:
1) the students of CCIS / SSE major;
2) students that have the course as a mandatory or elective part of their major or minor;
3) all other students based on registration order.

CS-E5330 IT Governance (5 cr)

Responsible teacher: Martti Mäntylä; Kari Hiekkanen

Status of the Course: Optional course of the Enterprise Systems track in Software and Service Engineering major.

Level of the Course: Master’s level

Teaching Period: II (Autumn 2017)

Learning Outcomes: You understand the role of IS in organizations and fundamental concepts related to information technology governance and service management, remember the basics of the relevant frameworks and process models in the area.

Content: Different strategic approaches to usage and management of information in organizational contexts. The fundamentals of IT Governance and IT Service Management. Current industry best practices and frameworks, such as ITIL, Cobit, ValIT.

Assessment Methods and Criteria: Agreed separately.

Study Material: Agreed separately.

Substitutes for Courses: Replaces former course CSE-E4655 / T-86.5180 IT Governance.

Prerequisites: CS-E5300 / CSE-E4650 Enterprise Systems Architecture or equivalent knowledge.

Grading Scale: 0-5

Registration for Courses: Registration via WebOodi.

Language of Instruction: English

Further Information:
The number of participants will be limited (50). Registrations will be prioritized in the following order:
1) the students of CCIS / SSE major;
2) students that have the course as a mandatory or elective part of their major or minor;
3) all other students based on registration order.

CS-E5340 Introduction to Industrial Internet (5 cr)
Responsible teacher: Martti Mäntylä
Level of the Course: Master’s level
Teaching Period: IV (Spring 2018)
Learning Outcomes: You learn about the general “big picture” of the Industrial Internet, its key technologies across the stack, and the opportunities it offers in various industrial domains.
Content: The course will cover the central topics of Industrial Internet, including: Basic concepts, Relevant technologies of the digitalization stack, Data modelling and analysis, - Topics of data integration, Application scenarios and business models, Management and human factors. The course consists of lectures with plentiful guest speakers from industry, giving practical case studies.
Assessment Methods and Criteria: Agreed separately.
Study Material: Agreed separately.
Substitutes for Courses: Replaces the former course CSE-E4670 Introduction to Industrial Internet.
Grading Scale: 0-5
Registration for Courses: Registration via WebOodi.
Language of Instruction: English
Further Information:
The number of participants will be limited (100). Registrations will be prioritized in the following order:
1) the students of CCIS / SSE major;
2) students that have the course as a mandatory or elective part of their major or minor;
3) all other students based on registration order.

CS-E5360 Systems of Systems (5 cr)
Responsible teacher: Kary Främling
Level of the Course: Master’s level
Teaching Period: V (Spring 2018)
Learning Outcomes: You will learn how to build multi-organizational applications that utilize data from Internet of Things sources (mobile, personal devices etc) as well as Industrial Internet sources (manufacturing systems, maintenance systems, ...), Web sources (weather forecasts, energy prices, ...). You will also learn how to enable “intelligent control” between those systems, thereby building “System of Systems” applications.
Content: Hands-on examples and real systems will be studied, Systems of Systems architectures will be drafted for different application domains. Concepts such as Green Information Systems, Closed-Loop Lifecycle Management, Total Cost of Ownership and Fleet Management are key concepts for the achievable benefits from Systems of Systems. The main scope of the course is on architecting Information System Architectures for “Big Systems; however, business aspects, as well as societal and environmental aspects of such systems will be considered.
Assessment Methods and Criteria: Project work, examination
Substitutes for Courses: Replaces the former course CSE-E4675 Systems of Systems
Grading Scale: 0-5
Registration for Courses: Registration via WebOodi. Please see WebOodi for registration dates.

CS-E5370 Law in Digital Society (5-6 cr)
Responsible teacher: Martti Mäntylä; Nomi Byström
Level of the Course: Master’s level
Teaching Period: IV (Spring 2018)
Workload: 30+0 (4+0)
Content: The topics of this course include a wide range of legal issues in the network society: regulation of the Internet of Things and Industrial Internet, data protection, software engineering: IT-contracts, copyright and other intellectual property rights, computer crimes and cyber security, etc.
Assessment Methods and Criteria: Examination and exercises.
Study Material: To be announced later.
Substitutes for Courses: Replaces former courses CSE-E4680 Law in Digital Society, T-76.5632 Legal Issues in Computing and T-76.5753 Law in Network Society.
Prerequisites: None
Grading Scale: 0-5
Language of Instruction: English

CS-E5380 Special Assignment on Enterprise Information Systems(V) (3-10 cr)
Responsible teacher: Martti Mäntylä; Kari Hiekkanen
Level of the Course: Master’s level
Teaching Period: (To be agreed with the teacher-in-charge.)
Workload: Varies based on the assignment.
Learning Outcomes: Become familiar with relevant literature in the agreed topic. Practice writing of scientific reports and articles.
Content: Independent essay on a chosen subject from the field of enterprise systems.
Assessment Methods and Criteria: Written essay.
Study Material: Agreed separately.
Substitutes for Courses: Replaces former courses CSE-E5655 / T-86.5150 Special Assignment on Enterprise Information Systems.
Grading Scale: 0-5
Language of Instruction: Finnish and English.
Further Information: The contents of this course vary.

CS-E5390 Seminar on Law and Technology(V) (3-6 cr)
Responsible teacher: Martti Mäntylä; Timo Nyberg
Level of the Course: Master’s level
Teaching Period: IV-V (Spring 2018)
Learning Outcomes: After the course the participants are able to understand the definitions and concepts of intellectual property rights, the contracts related to IPR, and strategies for IPR. Content: Forms of IPR (patents, trademarks, copyrights, database rights etc) and when to use them. How IPRs are used for business strategy e.g. for financing rounds. Role of contracts and in IPR generation & exploitation & licensing. Sources of IPR. Success stories from industry.
Assessment Methods and Criteria: Assessment will be based on a course assignment and/or an exam (optional).
Study Material: Schox 2011, Not So Obvious: An Introduction to Patent Law and Strategy. Other material will be announced later.
Substitutes for Courses: Replaces former course CSE-E5680 / T-76.5750 Seminar on Law and Technology.
Grading Scale: 0-5
Language of Instruction: English
Further Information: The Seminar on Law and Technology focuses on Exploitation of Intellectual Property Rights (IPR). It is a practical hands-on course on IPR and strategy. The seminar is part of the Aalto Ventures Program offering. The course is open to all Aalto students and EIT ICT Labs master and doctoral school students. The contents of the course vary.

CS-E5410 Technology Entrepreneurship Seminar(V) (4 cr)
Responsible teacher: Olli Mutanen
Status of the Course: This course is part of the Aalto Ventures Program.
Level of the Course: Master's level
Teaching Period: Organised when needed, I-V.
Workload: This is a 4 ECTS course (1cr = 27 h work hours).
Learning Outcomes: The course aims to provide concrete and pragmatic approach to conducting entrepreneurship in a high technology product or a service based business.
Content: This course is for students who are interested in technology entrepreneurship. The course is arranged as a seminar series, with sessions held by experienced entrepreneurs or domain experts which present real-life case studies of technology based ventures. In the seminar students will become familiar with the practical tools and methods of planning and testing a business concept in the real world. To test a business concept, students will learn how to describe a business model, develop pitches and validate the businesses’ key assumptions with easy (but fun!) online and offline experiments. Focus will be placed in understanding today’s practical methods and tools for business concept analysis and validation.
Assessment Methods and Criteria: Grading scheme is as follows: 80% course exercise, 20% personal activity and team work capabilities.
Study Material: Lecture materials, selected journal and practitioner articles and complementary materials. Materials vary from year to year, and are announced during the course.
Prerequisites: CS-E5100 / CSE-E4751 Introduction to IT Business and Venturing and CSE-E4755 Management of a Technology Venture or similar knowledge
Grading Scale: 0-5
Registration for Courses: Registration via WebOodi.
Language of Instruction: English
Further Information: The number of participants will be limited. Registrations will be prioritized in the following order: The students that have the course as a mandatory part of their study program will be prioritized first. The students that are participating in the Aalto Ventures Program or EIT I&E minor will be prioritized second. After this, all students are prioritized based on registration order.

CS-E5425 I&E Study Project (6 cr)

Responsible teacher: Olli Mutanen
Teaching Period: This I&E Study course is part of the EIT Digital I&E Minor. It is offered in periods I and II for the 2nd year EIT students.
Learning Outcomes: Students get the ability to apply, synthesize, and evaluate their prior I&E learning and acquire new knowledge and skills within a real business case by (1) identifying and assessing the impact of a technology in certain industry, market and/or organization, and (2) by analyzing the market and business environment and developing dimensions of the business model in relation with the business case. After completion of the course, students have developed their abilities:

- to translate innovations into feasible business solutions (Entrepreneurship skills and competencies)
- to apply, synthesize, and evaluate prior I&E learning within a specific innovation or entrepreneurial project setting and a specific innovation area.
- to conduct a business analysis, make decisions and formulate recommendations or justify actions in a real environment.
- to choose and apply relevant concepts/methods and/or tools and collect relevant data for conducting a business analysis and making decisions in a real environment.
- to produce a professional writing on a business analysis topic.
- to apply concepts, methods and tools pertaining to identifying and assessing the
impact/value of a technology in an industry, market and/or organization and the innovation / business opportunities it creates.

• in decision-making and leadership, based on a holistic understanding of the contributions of Higher Education, research and business to value creation, in limited sized teams and contexts (Leadership skills and competencies).

Content:
The course is based on a group assignment to address an innovation or entrepreneurial case grounded in real life. A large autonomy is given to the students to organize and achieve their goals. Students will work in teams of around 4-5 students, but each student will also have an individual responsibility of certain part of the study project. Students’ assignments to cases will be based on students’ interest, and the innovation or entrepreneurial project may be originating also from:

• Cases issued from EIT Digital Innovation Action Lines: within Activities, Partners / Business Community projects,
• Cases based on the continuation of students Summer School (or BDLab) project,
• Cases within other innovation or entrepreneurial projects rooted in a real-life environment.

The team will identify and address two (2) challenges/questions in the context of their case:

• One fixed and common topic that will be related to identifying and assessing the impact/value of a technology in an industry, market and/or organization, in the context of the innovation or entrepreneurial case,
• One case-dependent topic that will be related to analyzing the market / business environment, developing aspects of the business model in relation with the innovation or entrepreneurial case.

For each challenge/question, the students will cover four (4) generic steps of an explorative business analysis:

1. Identification of the relevant challenge/question,
2. Acquisition of applicable concepts/methods/tools,
3. Observations (data collection) on a selected part of the case,

Assessment Methods and Criteria: The assessment is based on a written group report, and may include also a presentation of the project results to the class and teaching personnel, and/or a share of peer-to-peer assessment. Specific assessment criteria will be presented at the beginning of the course. The grade for each student includes a share of individual assessment. 50% of the grade is based on ‘business analysis competence’ grading criteria and 50% on ‘general I&E competence’ grading criteria.

Substitutes for Courses: T-106.5330 ICT Innovation I&E Thesis, CS-E5420 ICT Innovation I&E Thesis.

Prerequisites: According to general prerequisites for EIT Digital Master School programs; attendance to the I&E Basics, BDLab and EIT Digital Summer School modules.

Grading Scale: 0-5.

Language of Instruction: English.

CS-E5430 ICT Innovation Summer School(V) (3-9 cr)

Responsible teacher: Olli Mutanen

Teaching Period: Summer

Learning Outcomes: Understanding the process of Business Model Generation, and knowing how to define and analyse the nine building blocks (customer segments, customer relations, channels, value proposition, key activities, key resources, key partners, cost structure and revenue streams). The ability to perform a business development process in the context of a societally relevant thematic area (for example, Health and Wellbeing, Smart Energy Systems) and understanding how technology and
innovation interact with all stakeholders (competitors, alliances, networks, markets, etc.)
Understanding usability, business life-cycles, market segments, global/market trends, and
recognizing their relative importance for product and service development The ability to
transform new innovations into viable business solutions on the commercial market,
combined with decision-making and leadership competences The ability to reflect upon
ethical, societal, scientific and sustainability considerations when developing new
products, technologies and business models.

Content: Ideation, identifying thematic innovations and opportunities, concept
development, integrating with stakeholders, usability, business life-cycles, operations and
maintenance.

Assessment Methods and Criteria: The course is implemented during summer as a
two-week intensive course, possibly consisting of two parts. It contains lectures (10-20%),
guided group work (40%), individual work (20-30%) and company visits or field work with
users (20-30%).
Grading is based on group presentation where the results are evaluated by a panel of
experts.

Study Material: A. Osterwalder & Y. Pigneur (2010). Business Model Generation, John
Wiley & Sons.

Substitutes for Courses: T-106.5320 ICT Innovation Summer School

Grading Scale: 0-5. May be graded as pass/fail

Language of Instruction: English

CS-E5440 Growth and Internationalization of Technology SMEs (4 cr)

Responsible teacher: Olli Mutanen

Status of the Course: This course is part of the Aalto Ventures Program and Master’s
Programme in ICT Innovation studies belonging to the 30 ECTS minor on Innovation and
Entrepreneurship (I&E) in ICT.

Level of the Course: Master’s level

Teaching Period: V (Spring 2018)

Workload: This is a 4 ECTS course. The expected student work hours required are as
follows: Seminars and lectures: 24h, Group assignments and individual work: 84h. Group
assignments are based on real venture cases and students are expected to work in
teams.

Learning Outcomes: Students will familiarize themselves with how to do a market
analysis for an internationalizing technology (service) venture, how to analyze and adjust
the venture’s offering according to the market environment and how to make a
go-to-market plan.

Content: Theory base for firm level growth and internationalization models. The course
exercise done in teams involves creating analyses of markets and competitive
environments, optimizing product (service) offerings, and developing a go-to-market plan.
Each team present results of the course exercise to the class as well as company
representatives in person. In addition, each group gives feedback to other teams in the
form of peer evaluations.

Assessment Methods and Criteria: Group assessment based on the three assignments
60%, group assessment based on feedback from other groups 20%, and personal
assessment based on activity 20%.

Study Material: Lecture materials, selected journal and practitioner articles and
complementary materials. Materials vary from year to year, and are announced during
the lectures.

Substitutes for Courses: Replaces the former courses T-128.6790 Special Course in
Software Business and CSE-E5754 / T-128.6000 Growth and Internationalization of
Software SMEs.

Prerequisites: CS-E5100 / CSE-E4751 Introduction to IT Business and Venturing and
CSE-E4755 Management of a Technology Venture / T-128.2500 Management of a
Software Venture or similar knowledge.
Grading Scale: 0-5
Registration for Courses: Enrollment in WebOodi.
Language of Instruction: English

Further Information: This course is intended for students who have studied management or marketing, and are interested in working in sales, marketing, product management, or general management roles in technology and/or service based ventures. The course is best suited for late Master’s level studies. The number of participants will be limited.

Registrations will be prioritized in the following order: The students that have the course as a mandatory part of their study program will be prioritized first. The students that are participating in the Aalto Ventures Program or EIT I&E minor will be prioritized second. After this, all students are prioritized based on registration order.

CS-E5460 Project in Embedded Systems(V) (5-10 cr)
Responsible teacher: Vesa Hirvisalo
Level of the Course: Master’s level
Teaching Period: I - II (Autumn 2017), III - V (Spring 2018)
Content: A learning project on a separately agreed technical topic in the area of embedded systems. The topic should include both learning goals and constructive work.
Assessment Methods and Criteria: Project is done in a group of 3 to 4 students. The group completes a common project work aimed at learning a particular topic and whose results are documented in a set of technical/scientific reports. In addition, each member of a group prepares a personal learning portfolio about his or her work and studying.
Substitutes for Courses: Replaces the former course T-106.5740
Prerequisites: Bachelor degree and preferably also courses from module A3.
Grading Scale: 0-5, may be graded with pass/fail
Language of Instruction: English
Further Information: The contents of the course vary. Participation can be restricted.

CS-E5500 Acoustical Measurements (5 cr)
Responsible teacher: Tapio Lokki
Status of the Course: Compulsory course of the CCIS Acoustics and Audio Technology major.
Level of the Course: Master’s level
Teaching Period: I (Autumn 2017)
Workload: Lectures 24 h (4 h / week). Exercise 10 h (measurements). Own work 100 h (reading of material, analysis of special assignment measurements and writing of special assignment reports, writing the learning diaries). Total: 134 h.
Learning Outcomes: The student understands basic acoustical measurements and can perform measurements with standard techniques. The student is also familiar with more advanced techniques and is well aware of limitations and problems in measurements. Moreover, the student can interpret the results and understands the uncertainties of different measurement techniques.
Content: Acoustical measurement techniques in theory and in practice. The main emphasis is in measurements related to room and building acoustics, but also environmental noise measurements are covered. The use of standard measuring equipment is introduced also in theory and in practice. The course include a special assignments and some smaller measurement demonstrations.
Assessment Methods and Criteria: Learning diaries and assignments.
Study Material: Lecture notes, articles, and standards. All available via MyCourses.
Substitutes for Courses: Replaces the courses ME-E2430 Acoustical Measurements / S-89.3330 Exercise on Acoustical Measurements and S-89.3430 Akustinen mittaustekniikka L.
Prerequisites: Basic skills in matlab.
Grading Scale: 0-5
Registration for Courses: WebOodi.
Language of Instruction: English

CS-E5520 Advanced Computer Graphics(V) (5 cr)
Responsible teacher: Jaakko Lehtinen
Level of the Course: Master’s level
Teaching Period: III-V (Spring 2018)
Workload: 16 + 20 (2 + 2).
Learning Outcomes: Contents vary by year. A solid understanding of a particular subfield of computer graphics and its state of the art, and ability to put the understanding to practice through programming.
Content: Contents vary by year, but always a deeper dive into the theory, algorithms, and their practical implementation of a particular subfield of computer graphics. Example: the topic for spring 2013 was physically based rendering, both its theory and numerical methods for generating realistic pictures.
Assessment Methods and Criteria: Programming assignments (90%), participation (10%).
Study Material: Lecture slides, online material.
Prerequisites: CS-C3100 / ME-C3100 Computer Graphics, C/C++ programming language.
Grading Scale: 0 - 5
Language of Instruction: English

CS-E5530 Virtual Acoustics (5 cr)
Responsible teacher: Lauri Savioja
Status of the Course: Compulsory course in CCIS Acoustics and Audio Technology major.
Level of the Course: M.Sc. / postgraduate
Teaching Period: III – IV (Spring 2018)
Workload: Lectures/demonstrations 28 h (4 h / week). Independent work 10 h (reading of material special assignment(s)).
Learning Outcomes: After the course the student masters basic knowledge of spatial audio.
Content: Basics of room acoustics, room acoustic modeling, reverberation algorithms, spatial sound recording and reproduction, binaural audio.
Assessment Methods and Criteria: Examination and assignment(s).
Substitutes for Courses: Replaces the course ME-E2420 / S-89.3421 / CS-E5510 Room Acoustics.
Prerequisites: ELEC-E5600 Communication Acoustics, ELEC-E5610 Acoustics and Physics of Sound, CS-E5500 Acoustical Measurements or equal knowledge.
Grading Scale: 0-5
Registration for Courses: WebOodi
Language of Instruction: English

CS-E5600 Aesthetics (3 cr)
Responsible teacher: Sanna Lehtinen
Status of the Course: Master’s Programme for Information Networks, compulsory course
Level of the Course: Master’s level
Teaching Period: III – V (Spring 2018)
Workload: Lectures 22 h, workshops 8 h , independent work 51h
Learning Outcomes: The course provides students with basic knowledge of philosophical aesthetics, its main concepts, and the way of thinking, argumenting and asking questions that is inherent in its perspective. Students will gain ability to apply this knowledge to relevant areas, also according to their own professional interests.

Content: Contemporary aesthetic thinking is introduced with examples from the sphere of the art and by presenting relevant philosophical concepts. Environment, technology and the sphere of the everyday are also presented through the lens of philosophical and applied aesthetics. The perspective of philosophical aesthetics unfolds through lectures and discussions based on selected material. The course ends in preparation and presentation of a group task. Throughout the course, each student records his or her individual learning path in a dedicated learning diary.

Assessment Methods and Criteria: Lectures, group assignment, learning diary. 50% of the grade is based on individual learning diary, 40% on group assignment, 10% on active participation during course meetings.

Study Material: To be announced later in MyCourses.

Substitutes for Courses: Replaces the courses ME-E3300 / Inf-0.1300 Estetiikka.

Grading Scale: 0-5

Language of Instruction: English

Further Information: The course is primarily offered for the students of the Degree Programme of Information Networks. Limited acceptance for other students, based on the lecturer’s judgement.

CS-E5610 Social Media (4 cr)

Responsible teacher: Risto Sarvas; Tapio Takala

Teaching Period: I – II (Autumn 2017)

Workload: Lectures 20 h and group work.

Learning Outcomes: After taking this course the student can apply societal perspectives into designing and analysing social media.

Content: The goal of this course is to give a general view of so called social media as a socio-technical phenomenon. In this course, the concept of ‘social’ refers to the society more than to social interaction. The focus points are the background and history of the social media, the impacts on people and their networks, the significance in politics and journalism, related ethical issues, and new uses for social media in communication and product development. The course includes an assignment where the students design a social media service, product or application.

Assessment Methods and Criteria: Lectures, weekly exercises and a group assignment.

Study Material: To be announced later in course web page.

Grading Scale: 0-5

Language of Instruction: English

CS-E5700 Hands-on Network Analysis (5 cr)

Responsible teacher: Jari Saramäki

Status of the Course: Master’s Programme in Life Science Technologies, optional course of major Complex Systems

Level of the Course: Master’s level

Teaching Period: IV-V (Spring 2018)

Workload: Contact teaching and group work (6 x 4 h), independent studying (research articles), independent group work

Learning Outcomes: This course is intended to be taken after CS-E5740 Complex Networks; it will deepen the students’ knowledge on network analysis techniques and dealing with empirical network data, including network visualization, Python programming, and statistical analysis.

Substitutes for Courses: Replaces the former course BECS-E4200 Hands-on Network Analysis.
Prerequisites: Compulsory: CS-E5740 / Becs-114.4150 Complex Networks.
Grading Scale: Pass/fail
Language of Instruction: English
Further Information: Number of students is limited and the prerequisite course is compulsory.

CS-E5710 Bayesian Data Analysis (5 cr)
Responsible teacher: Aki Vehtari
Status of the Course: Master's Programme in Life Science Technologies, compulsory course of major Human Neuroscience and -technology and optional course of major Complex Systems.
Level of the Course: Master's level
Teaching Period: I-II (Autumn 2017)
Workload: Lectures 10x2h, computer exercises 10x2h, independent studying (text book, programming, home exercise report), final exam
Learning Outcomes: After the course, the student can explain the central concepts in Bayesian statistics, and name steps of the Bayesian modeling process. The student can recognize usages for common (i.e. those presented during the course) statistical models, and formulate the models in these situations. The student can compare the most popular Bayesian simulation methods, and implement them. The student can use analytic and simulation based methods for learning the parameters of a given model. The student can estimate the fit of a model to data and compare models.
Content: Bayesian probability theory and bayesian inference. Bayesian models and their analysis. Computational methods, Markov-Chain Monte Carlo.
Substitutes for Courses: Replaces courses BECS-E2601 Bayesian Data Analysis, Becs-114.2601 Bayesian Modelling and Becs-114.1311 Introduction to Bayesian Statistics.
Prerequisites: Differential and integral calculus, basics of probability and statistics, basics of programming (Python, R or Matlab). Recommended: matrix algebra.
Grading Scale: 0 - 5
Language of Instruction: English

CS-E5720 Work Course on Bayesian Analysis (2 cr)
Responsible teacher: Aki Vehtari
Teaching Period: IV, V (Spring 2018)
Content: Linear model, generalized linear model, ANOVA, multilevel/hierarchical model.
Assessment Methods and Criteria: Project work.
Study Material: Course book or a collection of articles, will be published at the beginning of the course.
Substitutes for Courses: Replaces the former course BECS-114.5312 Work Course on Bayesian Analysis.
Prerequisites: CS-E5710 Bayesian data analysis
Grading Scale: pass/fail
Language of Instruction: English

CS-E5740 Complex Networks(V) (5 cr)
Responsible teacher: Jari Saramäki
Teaching Period: I-II (Autumn 2017)
Learning Outcomes: This course will provide students with fundamentals of complex network theory, together with skills for applying this knowledge in to practical network analysis.

Assessment Methods and Criteria: Grades are given on the basis of weekly exercises and project work, there is no exam. Exercises and project work require Python programming - you do not need to be familiar with Python beforehand, we will give tutorials. Some programming skills are nevertheless required.

Substitutes for Courses: Replaces the former course BECS-114.4150 Complex Networks.

Grading Scale: 0-5

Language of Instruction: English

CS-E5745 Mathematical Methods for Network Science (5 cr)

Responsible teacher: Riku Linna

Status of the Course: Elective Course of the Complex Systems Major

Teaching Period: III (Spring), lectured biennially (lectured in academic year 2017 - 2018)

Learning Outcomes: This course will provide students an overview on mathematical topics and tools in network science. The students will develop skills in doing pen-and-paper calculations and an understanding of analytical methods that are common in network science.

Content: Mathematical methods and their use in networks science. Topics include probability generating functions, excess degree distributions, common approximations and assumptions in network science, network models, methods for deriving formulas for component size distributions, percolation, branching processes, master equations, rate equations, growing network models, processes on networks, exponential random graphs, block models, multiplex networks, multilayer networks, and mutually connected components.

Assessment Methods and Criteria: Grades (1-5) are given on the basis of weekly mandatory exercises and project work, there is no exam.

Grading Scale: 0-5

Language of Instruction: English

CS-E5755 Nonlinear Dynamics and Chaos (5 cr)

Responsible teacher: Riku Linna

Status of the Course: Optional course in Complex Systems major

Level of the Course: Master, Doctoral

Teaching Period: III (Spring 2018)

Assessment Methods and Criteria: Final examination and mathematical/computational exercises.

Study Material: S. H. Strogatz, Nonlinear dynamics and chaos. Specific articles may be added.

Substitutes for Courses: Replaces the former course BECS-114.7151 Nonlinear Dynamics and Chaos and CS-E5750 Nonlinear Dynamics and Chaos.

Prerequisites: The student should be familiar with differential equations, linear algebra, and programming.

Grading Scale: 0-5

Language of Instruction: English

Further Information: This course is for Master’s students and graduate students.

CS-E5770 Special Course in Complex Systems(V) (3-6 cr)

Responsible teacher: Jari Saramäki

Level of the Course: Master’s level

Teaching Period: Announced later

Learning Outcomes: You are familiar with some scientifically or technically demanding
topic.

Content: This course has a varying topic. The content of the course is a selected current topic areas in complex systems. When arranged, the course may be given in English. Information about the arrangement and the beginning of the course will be published in the web pages.

Assessment Methods and Criteria: Announced later.

Grading Scale: 0-5, may also be graded with pass/fail.

Language of Instruction: English or Finnish.

Further Information: The content of the course varies.

CS-E5780 Special Assignment in Complex Systems (5-10 cr)

Responsible teacher: Jari Saramäki; Riku Linna; Aki Vehtari

Status of the Course: Master’s Programme in Life Science Technologies, optional course of major Complex Systems

Level of the Course: Master’s level

Teaching Period: I, II, III, IV, V (Autumn & Spring)

Workload: Independent project work (literature survey, design, implementation, and write-up)

Content: This course comprises an individual project work and an oral presentation on a chosen complex systems topic. The project work may involve a literature survey, theoretical studies and/or data analysis.

Grading Scale: 0 - 5

Language of Instruction: English

CS-E5790 Computational Science (5 cr)

Responsible teacher: Riku Linna

Status of the Course: Optional course of major Complex Systems. Optional course of major Machine Learning and Data Mining.

Teaching Period: I - II (Autumn 2017)

Content: Introduction to numerical mathematics and modeling. Numerical interpolation, curve fitting, integration and optimization. Data fitting and filtering. Solving systems of linear equations. Basics of the Monte Carlo and Molecular Dynamics methods.

Computer exercises.

Assessment Methods and Criteria: Examination and mathematical exercises.

Substitutes for Courses: Replaces courses BECS-114.1100 Computational Science, S-114.100 and S-114.1100.

Prerequisites: The student should be familiar with programming (preferably FORTRAN or C). Basic (first-year) mathematics and familiarity with programming in some language, e.g. python, C, C++, or FORTRAN.

Grading Scale: 0-5

Language of Instruction: English

CS-E5800 Seminar on Computational Engineering(V) (3 cr)

Responsible teacher: Riku Linna

Teaching Period: III - IV (Spring 2018)

Content: Practical work preparing a representation.

Assessment Methods and Criteria: Term paper and report, active participation to the seminar.
Substitutes for Courses: Replaces former courses BECS-114.2240, S-114.240, S-114.2502, S-114.2240 and Becs-114.4245.

Grading Scale: 0-5

Language of Instruction: English

Further Information: The content of the course varies.

CS-E5810 Special Project in Computational Engineering (3-8 cr)

Responsible teacher: Jari Saramäki; Jouko Lampinen; Jukka Tulkki; Kimmo Kaski; Mikko Sams

Teaching Period: I, II, III, IV, V

Content: Special project related to computational engineering.

Study Material: Course handouts.

Substitutes for Courses: Replaces courses BECS-114.3215, S-114.215, S-114.3215 ja Becs-114.3520.

Grading Scale: 0-5

Language of Instruction: Finnish. Can be taken in English upon request.

CS-E5820 Special Course in Computational Engineering II(V) (3-6 cr)

Responsible teacher: Jouko Lampinen

Teaching Period: I, II, III, IV, V

Content: The contents of course vary yearly. The aim of the course is to give licentiate level teaching on a topic related to computational technology. The course may be given as lectures or as a seminar course.

Assessment Methods and Criteria: To be discussed with the teacher.

Study Material: Course book or a collection of articles, will be published at the beginning of the course.

Substitutes for Courses: Replaces courses BECS-114.4202, S-114.202, S-114.4202 and Becs-114.4203.

Grading Scale: 0-5

Language of Instruction: Finnish. Can be taken in English upon request.

Further Information: The content of the course varies.

CS-E5830 Research Seminar on Computational Science(V) (3-6 cr)

Responsible teacher: Jouko Lampinen

Teaching Period: I - II, III - IV

Content: Course with varying content.

Assessment Methods and Criteria: Seminar presentation, report and active participation.

Substitutes for Courses: Replaces courses BECS-114.4220, S-114.220 ja S-114.3503, S-114.4220.

Grading Scale: 0-5

Language of Instruction: Finnish. Can be taken in English upon request.

Further Information: The content of the course varies. Can be arranged both in periods I-II and III-IV if necessary.

CS-E5840 Individual Studies on Computational Engineering(V) (1-8 cr)

Responsible teacher: Jari Saramäki; Riku Linna; Jouko Lampinen; Jukka Tulkki; Kimmo Kaski; Aki Vehtari

Teaching Period: I, II, III, IV, V

Content: The topic and its depth shall be negotiated with one of the teachers.

Substitutes for Courses: Replaces courses BECS-114.4230, S-114.230, S-114.4230.

Grading Scale: 0-5

Language of Instruction: Finnish. Can be taken in English upon request.

Further Information: The content of this course varies.
CS-E5850 Individualized Studies in the Laboratories(V) (1-10 cr)

Responsible teacher: Jouko Lampinen
Teaching Period: I, II (Autumn) III, IV, V (Spring)
Content: Individual assignments. To take this course, contact the responsible teacher directly in order to agree on the supervisor, topic, extent and contents of the assignment.
Substitutes for Courses: Replaces the former course BECS-114.5120.
Grading Scale: 0 – 5. (Pass/Fail only if determined specifically at the start of the course/assignment.)
Registration for Courses: Contact the responsible teacher or a potential supervisor directly. See MyCourses page for further instructions.
Language of Instruction: English
Further Information: The contents of the course vary.

CS-E5860 Computational Genomics (4-7 cr)

Responsible teacher: Pekka Marttinen
Level of the Course: Master's level
Teaching Period: I (Autumn 2017)
Workload: 24 + 12 (4 + 2)
Learning Outcomes: The course provides you with an introduction of computational methods used in sequence and genome analysis. After the course you can design, analyze and understand real-life genomic data in computational and biomedical research groups and in industry.
Content: Algorithms and models for biological sequences and genomics.
Assessment Methods and Criteria: Examination and exercises.
Substitutes for Courses: Replaces former course T-61.5120 Computational Genomics.
Prerequisites: Basics in mathematics, statistics and computer science.
Grading Scale: 0-5
Language of Instruction: English

CS-E5870 High-Throughput Bioinformatics (5-7 cr)

Responsible teacher: Harri Lähdesmäki
Level of the Course: Master’s level
Teaching Period: II (Autumn 2017)
Workload: 24 + 12 (4 + 2)
Learning Outcomes: The course provides you with basic understanding of high-throughput data and computational methods that are commonly used for analysing the data in biological problems. After the course you have skills to apply various computational methods in real biological problems.
Content: The course introduces computational and statistical methods for analyzing modern high-throughput biological data and their use in systems biology. Relevant high-throughput measurement technologies are reviewed during the course.
Assessment Methods and Criteria: Examination and exercise work.
Study Material: To be specified in MyCourses at the start of the course.
Substitutes for Courses: Replaces former course T-61.5050 High-Throughput Bioinformatics.
Prerequisites: Basics in mathematics, statistics and computer science.
Grading Scale: 0-5
Language of Instruction: English

CS-E5880 Modeling Biological Networks(V) (5-7 cr)

Responsible teacher: Harri Lähdesmäki
Level of the Course: Master’s level
Teaching Period: III (Spring 2018)
Workload: 24 + 24 (4 + 4)
Learning Outcomes: After the course students will have a comprehensive understanding of fundamental methodological concepts underlying modeling of biological networks and systems. Students will learn to choose appropriate modeling methods for a variety of small- and large-scale problems as well as for different types of experimental data. Students will learn to apply various computational and statistical modeling methods in real interdisciplinary bio-logical problems and have sufficient knowledge to explore the topic further.
Assessment Methods and Criteria: Examination and exercises/assignment problems.
Study Material: To be specified in MyCourses at the start of the course.
Substitutes for Courses: Replaces former course T-61.5110 Modeling Biological Networks.
Prerequisites: Basic mathematics and statistics courses. Basic bioinformatics courses help.
Grading Scale: 0-5
Language of Instruction: English

CS-E5890 Statistical Genetics and Personalised Medicine (5 cr)
Responsible teacher: Harri Lähdesmäki
Level of the Course: Master’s level (but can be included in doctoral studies as well)
Teaching Period: IV-V (Spring 2018)
Workload: 24 + 12 (4 + 2)
Learning Outcomes: After the course students will have a basic understanding of statistical data analysis methods that are used in various genetics, biomedicine, personalized medicine and digital health problems. Students will learn skills to apply various statistical methods in real biomedical problems.
Content: The course introduces statistical methods for analyzing high-throughput biological data in various genetics and personalized medicine problems, including e.g. genetic association analysis, survival analysis, biomarker identification and drug response modeling.
Assessment Methods and Criteria: Exercise work/Project assignments.
Study Material: To be specified in MyCourses at the start of the course.
Substitutes for Courses: Replaces the course T-61.6070 Special Course in Bioinformatics I.
Prerequisites: Basics in mathematics, statistics and computer science.
Grading Scale: 0-5, may be graded with pass/fail
Language of Instruction: English

CS-L4080 Research seminar in software technology(V) (3-10 cr)
Responsible teacher: Lauri Malmi; Eljas Soisalon-Soininen; Jorma Tarhio
Level of the Course: Doctoral level
Teaching Period: According to agreement.
Content: The contents of this seminar vary.
Substitutes for Courses: CSE-L7200
Grading Scale: 0-5, may be graded with pass/fail.
Language of Instruction: Finnish or English
Further Information: Several different seminars may be arranged under this course code during the year. Some of these will be given in English, some in Finnish. The course is for doctoral and master’s students.
SCI3027.kand Bachelor’s Thesis and Seminar (Computer Science) (10 cr)

Responsible teacher: Juho Kannala; Viivi Uurtio
Teaching Period: I - II, III - IV (Autumn, Spring)
Workload: 24 + 8 (2 + 0). Lectures, presentation and meetings with instructor. The rest: individual work.
Learning Outcomes: After the completion of the Bachelor’s Thesis and Seminar you are able to understand scientific processes and search for relevant background information both applying and analyzing the data collected. In addition, you are able to produce scientific articles in precise and correct language, present your findings and both receive and give feedback.
Content: Scientific thinking, collection, structuring and processing of information, linguistic and communicative skills.
Assessment Methods and Criteria: Lectures, exercises, seminar participation and bachelors thesis.
Course Homepage: https://mycourses.aalto.fi/course/search.php?search=SCI3027.kand
Grading Scale: hyv-kh · Kandidaatintyöt
Language of Instruction: Finnish or Swedish
Further Information: A verified personal study plan for the lower university degree is a prerequisite for starting the course.